类风湿性关节炎
斯达
JAK-STAT信号通路
癌症研究
贾纳斯激酶
成纤维细胞
医学
信号转导
化学
免疫学
细胞因子
受体
车站3
内科学
酪氨酸激酶
体外
生物化学
作者
Takashi Emori,Michiko Kasahara,Shingo Sugahara,Motomu Hashimoto,Hiromu Ito,Shuh Narumiya,Yasuyuki Higashi,Yasutomo Fujii
标识
DOI:10.1016/j.ejphar.2020.173238
摘要
Rheumatoid arthritis (RA) fibroblast-like synoviocytes (RA-FLS) play a crucial role in the pathogenesis of RA. RA-FLS display passive pro-inflammatory responses and self-directed aggressive responses, such as pro-inflammatory mediator production, reduced apoptosis and formation of a thickened synovial lining. Evidence suggests a role for Janus kinase (JAK)-signal transducer and transcriptional activator (STAT) signaling in the passive response but the aggressive behavior of RA-FLS is poorly understood. The pharmacologic effects of the novel JAK inhibitor, peficitinib, on cytokine-induced intracellular signaling and self-directed aggressive behavior of RA-FLS (e.g., increased expression of apoptosis-resistant genes and sodium nitroprusside-induced apoptosis) were investigated and compared with approved JAK inhibitors. RA-FLS assembly to form a lining-like structure and pro-inflammatory mediator production was investigated in three-dimensional (3D)-micromass culture. Peficitinib inhibited STAT3 phosphorylation in RA-FLS following induction by interferon (IFN)-α2b, IFN-γ, interleukin (IL)-6, oncostatin M, and leukemia inhibitory factor in a concentration-related manner, and was comparable to approved JAK inhibitors, tofacitinib and baricitinib. Peficitinib and tofacitinib suppressed autocrine phosphorylation of STAT3 and expression of apoptosis-resistant genes, and promoted cell death. In 3D-micromass culture, peficitinib reduced multi-layered RA-FLS cells to a thin monolayer, an effect less pronounced with tofacitinib. Both compounds attenuated production of vascular endothelial growth factor-A, matrix metalloproteinases, IL-6 and tumor necrosis factor superfamily-11. This study confirmed the pathogenic role of uncontrolled JAK-STAT signaling in the aggressive and passive responses of RA-FLS that are critical for RA progression. The novel JAK inhibitor peficitinib suppressed the pro-inflammatory behavior of RA-FLS, accelerated cell death and abrogated thickening of the synovium.
科研通智能强力驱动
Strongly Powered by AbleSci AI