Boosting algorithms for network intrusion detection: A comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoost

阿达布思 Boosting(机器学习) 计算机科学 入侵检测系统 人工智能 机器学习 水准点(测量) 字错误率 假阳性率 模式识别(心理学) 分类器(UML) 大地测量学 地理
作者
Amin Shahraki,Mahmoud Abbasi,Øystein Haugen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:94: 103770-103770 被引量:123
标识
DOI:10.1016/j.engappai.2020.103770
摘要

Computer networks have been experienced ever-increasing growth since they play a critical role in different aspects of human life. Regarding the vulnerabilities of computer networks, they should be monitored regularly to detect intrusions and attacks by using high-performance Intrusion Detection Systems (IDSs). IDSs try to differentiate between normal and abnormal behaviors to recognize intrusions. Due to the complex behavior of malicious entities, it is crucially important to adopt machine learning methods for intrusion detection with a fine performance and low time complexity. Boosting approach is considered as a way to deal with this challenge. In this paper, we prepare a clear summary of the latest progress in the context of intrusion detection methods, present a technical background on boosting, and demonstrate the ability of the three well-known boosting algorithms (Real Adaboost, Gentle Adaboost, and Modest Adaboost) as IDSs by using five IDS public benchmark datasets. The results show that the Modest AdaBoost has a higher error rate compared to Gentle and Real AdaBoost in IDSs. Besides, in the case of IDSs, Gentle and Real AdaBoost show the same performance as they have about 70% lower error rates compared to Modest Adaboost, however, Modest AdaBoost is about 7% faster than them. In addition, as IDSs need to retrain the model frequently, the results show that Modest AdaBoost has a much lower performance than Gentle and Real AdaBoost in case of error rate stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观以松发布了新的文献求助10
刚刚
隐形芹发布了新的文献求助30
1秒前
HJJHJH发布了新的文献求助10
2秒前
2秒前
田様应助夜星子采纳,获得10
3秒前
zuofighting发布了新的文献求助10
3秒前
3秒前
蓝桥易乞发布了新的文献求助10
4秒前
雨渺清空完成签到 ,获得积分10
4秒前
fbb关闭了fbb文献求助
4秒前
5秒前
暖小阳发布了新的文献求助10
6秒前
生动惜灵应助HJJHJH采纳,获得10
6秒前
从容的凡波完成签到,获得积分20
6秒前
小蘑菇应助summer采纳,获得10
6秒前
危机的囧完成签到,获得积分20
6秒前
知行合一发布了新的文献求助10
7秒前
8秒前
领导范儿应助京阿尼采纳,获得10
9秒前
ZHAO完成签到,获得积分10
10秒前
gaodu发布了新的文献求助30
12秒前
小雨完成签到,获得积分10
12秒前
肖肖发布了新的文献求助10
13秒前
13秒前
13秒前
怕孤独的寒梦完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
自然的沛山完成签到,获得积分10
16秒前
yy完成签到,获得积分10
18秒前
mkxany驳回了SciGPT应助
18秒前
坚强幼荷发布了新的文献求助10
18秒前
好玩和有趣完成签到,获得积分10
20秒前
奥利奥利奥完成签到 ,获得积分10
20秒前
所所应助shen采纳,获得10
20秒前
wanci应助直率的人生采纳,获得30
20秒前
summer发布了新的文献求助10
21秒前
21秒前
22秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434140
求助须知:如何正确求助?哪些是违规求助? 3031366
关于积分的说明 8941708
捐赠科研通 2719312
什么是DOI,文献DOI怎么找? 1491703
科研通“疑难数据库(出版商)”最低求助积分说明 689455
邀请新用户注册赠送积分活动 685580