Boosting algorithms for network intrusion detection: A comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoost

阿达布思 Boosting(机器学习) 计算机科学 入侵检测系统 人工智能 机器学习 水准点(测量) 字错误率 假阳性率 模式识别(心理学) 分类器(UML) 大地测量学 地理
作者
Amin Shahraki,Mahmoud Abbasi,Øystein Haugen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:94: 103770-103770 被引量:123
标识
DOI:10.1016/j.engappai.2020.103770
摘要

Computer networks have been experienced ever-increasing growth since they play a critical role in different aspects of human life. Regarding the vulnerabilities of computer networks, they should be monitored regularly to detect intrusions and attacks by using high-performance Intrusion Detection Systems (IDSs). IDSs try to differentiate between normal and abnormal behaviors to recognize intrusions. Due to the complex behavior of malicious entities, it is crucially important to adopt machine learning methods for intrusion detection with a fine performance and low time complexity. Boosting approach is considered as a way to deal with this challenge. In this paper, we prepare a clear summary of the latest progress in the context of intrusion detection methods, present a technical background on boosting, and demonstrate the ability of the three well-known boosting algorithms (Real Adaboost, Gentle Adaboost, and Modest Adaboost) as IDSs by using five IDS public benchmark datasets. The results show that the Modest AdaBoost has a higher error rate compared to Gentle and Real AdaBoost in IDSs. Besides, in the case of IDSs, Gentle and Real AdaBoost show the same performance as they have about 70% lower error rates compared to Modest Adaboost, however, Modest AdaBoost is about 7% faster than them. In addition, as IDSs need to retrain the model frequently, the results show that Modest AdaBoost has a much lower performance than Gentle and Real AdaBoost in case of error rate stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
selfevidbet完成签到,获得积分10
1秒前
2秒前
cr7发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
流星雨发布了新的文献求助10
5秒前
7秒前
9秒前
9秒前
momo完成签到,获得积分10
9秒前
小二郎应助SW采纳,获得10
10秒前
mount发布了新的文献求助10
11秒前
abcd1234完成签到,获得积分10
11秒前
12秒前
园田真理发布了新的文献求助10
12秒前
LLL完成签到,获得积分10
13秒前
kk发布了新的文献求助10
13秒前
李爱国应助淡淡的忆彤采纳,获得10
14秒前
14秒前
王洋应助王大D采纳,获得10
15秒前
Darliza完成签到 ,获得积分10
16秒前
16秒前
英俊的铭应助huaer采纳,获得10
17秒前
17秒前
笨蛋研究生完成签到,获得积分10
18秒前
猪猪hero应助mount采纳,获得10
18秒前
王文博完成签到 ,获得积分10
18秒前
19秒前
苔原猫咪甜甜圈完成签到,获得积分10
19秒前
pwy完成签到,获得积分10
19秒前
要杯热拿铁完成签到,获得积分10
20秒前
kk完成签到,获得积分10
20秒前
标致醉波应助hhh采纳,获得30
20秒前
Lucas应助XCHI采纳,获得10
21秒前
21秒前
22秒前
22秒前
鹿城完成签到 ,获得积分10
22秒前
丘比特应助日月同辉采纳,获得10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956435
求助须知:如何正确求助?哪些是违规求助? 3502556
关于积分的说明 11108554
捐赠科研通 3233240
什么是DOI,文献DOI怎么找? 1787203
邀请新用户注册赠送积分活动 870528
科研通“疑难数据库(出版商)”最低求助积分说明 802105