Intelligent decision-making support system for manufacturing solution recommendation in a cloud framework

云制造 云计算 计算机科学 排名(信息检索) 背景(考古学) 制造执行系统 制造工程 制造业 钥匙(锁) 计算机集成制造 工业工程 工程类 机器学习 古生物学 操作系统 生物 法学 计算机安全 政治学
作者
Alessandro Simeone,Yunfeng Zeng,Alessandra Caggiano
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:112 (3-4): 1035-1050 被引量:25
标识
DOI:10.1007/s00170-020-06389-1
摘要

Abstract Cloud manufacturing represents a valuable tool to enable wide sharing of manufacturing services and solutions by connecting suppliers and customers in large-scale manufacturing networks through a cloud platform. In this context, with increasing manufacturing network size at global scale, the elevated number of manufacturing solutions offered via cloud platform to connected customers can increase the complexity of decision-making, resulting in poor user experience from a customer perspective. To tackle this issue, in this paper, an intelligent decision-making support tool based on a manufacturing service recommendation system (RS) is designed and developed to provide for tailored manufacturing solution recommendation to customers in a cloud manufacturing system. A machine learning procedure based on neural networks for data regression is employed to process historical data on user manufacturing solution preferences and to carry out the automatic extraction of key features from incoming user instances and compatible manufacturing solutions generated by the cloud platform. In this way, the machine learning procedure is able to perform a customer segmentation and build a recommendation list characterized by a ranking of manufacturing solutions which is tailored to the specific customer profile. With the aim to validate the proposed intelligent decision-making support system, a case study is simulated within the framework of a cloud manufacturing platform delivering dynamic sharing of sheet metal cutting manufacturing solutions. The system capability is discussed in terms of machine learning performance as well as industrial applicability and user selection likelihood.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉书竹完成签到,获得积分10
2秒前
早睡发布了新的文献求助10
2秒前
3秒前
4秒前
ju龙哥完成签到,获得积分10
5秒前
是鸢完成签到,获得积分10
5秒前
上官若男应助激昂的背包采纳,获得10
5秒前
CHH发布了新的文献求助10
5秒前
东方树叶发布了新的文献求助10
6秒前
7秒前
jjy完成签到,获得积分10
7秒前
7秒前
8秒前
Richardisme发布了新的文献求助10
8秒前
8秒前
CodeCraft应助jjjwln采纳,获得10
10秒前
茹茹发布了新的文献求助10
10秒前
wan_lo发布了新的文献求助10
10秒前
阳光的牛牛完成签到,获得积分10
10秒前
10秒前
桥豆麻袋完成签到,获得积分10
12秒前
12秒前
科研小白发布了新的文献求助10
13秒前
15秒前
甜甜妙梦发布了新的文献求助10
17秒前
sherry完成签到,获得积分10
17秒前
17秒前
WM应助liuzengzhang666采纳,获得10
18秒前
乐乐酱应助林慕然2023采纳,获得10
18秒前
19秒前
19秒前
19秒前
wsdsd完成签到,获得积分10
19秒前
júpiter发布了新的文献求助10
19秒前
han发布了新的文献求助10
21秒前
22秒前
摘星012完成签到 ,获得积分10
22秒前
CyberHamster完成签到,获得积分10
23秒前
lifescience1发布了新的文献求助10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304627
求助须知:如何正确求助?哪些是违规求助? 2938626
关于积分的说明 8489303
捐赠科研通 2613106
什么是DOI,文献DOI怎么找? 1427111
科研通“疑难数据库(出版商)”最低求助积分说明 662895
邀请新用户注册赠送积分活动 647487