Three-Dimensional Covalent Organic Frameworks: From Topology Design to Applications

共价键 纳米技术 四面体 计算机科学 拓扑(电路) 材料科学 化学 工程类 结晶学 电气工程 有机化学
作者
Bo Gui,Guiqing Lin,Huimin Ding,Chao Gao,Arindam Mal,Cheng Wang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:53 (10): 2225-2234 被引量:234
标识
DOI:10.1021/acs.accounts.0c00357
摘要

ConspectusCovalent organic frameworks (COFs) represent a novel type of crystalline porous polymers with potential applications in many areas. Considering their covalent connectivity in different dimensions, COFs are classified as two-dimensional (2D) layered structures or three-dimensional (3D) networks. In particular, 3D COFs have gained increasing attention recently because of their remarkably large surface areas (>5000 m2/g), hierarchical nanopores and numerous open sites. However, it has been proven to be a major challenge to construct 3D COFs, as the main driving force for their synthesis comes from the formation of covalent bonds. In addition, there are several stones on the roads blocking the development of 3D COFs. First, the successful topology design strategies of 3D COFs have been limited to [4 + 2] or [4 + 3] condensation reactions of the tetrahedral molecules with linear or triangular building blocks in the first decade, which led to only three available topologies (ctn, bor, and dia) and strongly restricted the incorporation of some important functional units. Next, as it is very challenging to obtain large-size single crystals of 3D COFs and the same building blocks may yield many possible structures that are quite difficult to identify from simulations, their structure determination has been considered a major issue. Last, the building blocks utilized to synthesize 3D COFs are very limited, which further affects their functionalization and applications. Therefore, since it was first announced in 2007, research studies regarding 3D COFs have been underexplored for many years, and very few examples have been reported.To confront these obstacles in 3D COFs, we started contributing to this field in 2016. Considering that many interesting quadrilateral molecules (e.g., pyrene and porphyrin) cannot be easily derivatized into linear or triangular motifs, we developed a novel topology design strategy to construct 3D COFs via [4 + 4] condensation reactions of tetrahedral and quadrilateral building blocks. After many trials, we found that this is a general synthetic strategy to build 3D COFs with the new pts topology. In addition, we explored the structure determination of polycrystalline 3D COFs prepared by our developed strategy via a 3D electron diffraction technique. Moreover, we expanded the toolbox of molecular building blocks for creating 3D COFs and successfully demonstrated the functionalization of 3D COFs with characteristic properties and applications. In this Account, we summarize our above ongoing research contributions, including (i) a novel topology design strategy for the synthesis of 3D COFs; (ii) attempts to determine the crystal structure of polycrystalline 3D COFs with atomic resolution; and (iii) the diversification of building blocks and applications of functionalized 3D COFs. Overall, our studies not only offer a new paradigm of expansion in the topology design strategy and building block families of 3D COFs, but also provide an idea of future opportunities for relevant researchers in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乔钰涵发布了新的文献求助10
2秒前
李健的粉丝团团长应助bing采纳,获得10
2秒前
2秒前
斯文败类应助月宸采纳,获得10
2秒前
hhh完成签到,获得积分20
4秒前
调皮芫发布了新的文献求助10
6秒前
小小小发布了新的文献求助10
6秒前
顾矜应助王明浩采纳,获得30
7秒前
7秒前
Jasper应助紧张的毛衣采纳,获得10
7秒前
9秒前
9秒前
陆66完成签到 ,获得积分10
10秒前
11秒前
在水一方应助调皮芫采纳,获得10
12秒前
bing发布了新的文献求助10
12秒前
13秒前
14秒前
15秒前
16秒前
16秒前
mwl发布了新的文献求助10
18秒前
dui发布了新的文献求助10
18秒前
zydd完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助150
18秒前
20秒前
20秒前
RR发布了新的文献求助10
21秒前
22秒前
崔懿龍发布了新的文献求助10
22秒前
23秒前
希望天下0贩的0应助小渔采纳,获得10
24秒前
24秒前
牛马发布了新的文献求助10
25秒前
liu66完成签到,获得积分10
25秒前
walk发布了新的文献求助10
25秒前
东方天奇完成签到 ,获得积分10
26秒前
26秒前
烟雨落金城完成签到,获得积分20
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
Cowries - A Guide to the Gastropod Family Cypraeidae. Volume 2: Shells and Animals 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950925
求助须知:如何正确求助?哪些是违规求助? 4213683
关于积分的说明 13105422
捐赠科研通 3995528
什么是DOI,文献DOI怎么找? 2186939
邀请新用户注册赠送积分活动 1202197
关于科研通互助平台的介绍 1115421