医学
乳腺癌
肿瘤科
接收机工作特性
三阴性乳腺癌
比例危险模型
内科学
长非编码RNA
多元统计
相关性
预测能力
预测建模
癌症
基因
核糖核酸
机器学习
生物
计算机科学
遗传学
认识论
几何学
哲学
数学
作者
Chao Yuan,Hongjun Yuan,Li Chen,Miaomiao Sheng,Wenru Tang
出处
期刊:Biomarkers in Medicine
[Future Medicine]
日期:2021-01-01
卷期号:15 (1): 43-55
被引量:4
标识
DOI:10.2217/bmm-2020-0505
摘要
Background: Triple-negative breast cancer (TNBC) is characterized by fast tumor increase, rapid recurrence and natural metastasis. We aimed to identify a genetic signature for predicting the prognosis of TNBC. Materials & methods: We conducted a weighted correlation network analysis of datasets from the Gene Expression Omnibus. Multivariate Cox regression was used to construct a risk score model. Results: The multi-factor risk scoring model was meaningfully associated with the prognosis of patients with TBNC. The predictive power of the model was demonstrated by the time-dependent receiver operating characteristic curve and Kaplan-Meier curve, and verified using a validation set. Conclusion: We established a long noncoding RNA-based model for the prognostic prediction of TNBC.
科研通智能强力驱动
Strongly Powered by AbleSci AI