亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ultrafast pulse laser inscription and surface quality characterization of micro-structured silicon wafer

材料科学 薄脆饼 超短脉冲 激光烧蚀 激光器 光电子学 轮廓仪 烧蚀 涂层 光学 复合材料 表面粗糙度 物理 工程类 航空航天工程
作者
S. Shalini,Samuel G.L.
出处
期刊:Journal of Manufacturing Processes [Elsevier BV]
卷期号:62: 323-336 被引量:8
标识
DOI:10.1016/j.jmapro.2020.12.034
摘要

We report the applicability of the ultrafast pulse laser inscription technique to achieve high ablation depth on uncoated silicon wafer despite its higher surface reflectivity. The proposed methodology of this research work can be an alternative approach for the usual industrial practice of coating silicon surface with highly reflective materials for increasing the absorption phenomenon. To unveil the potential of the proposed methodology, a comparative study was carried out by fabricating microchannels of higher depth on uncoated and coated silicon wafer by varying repetition rate from 10 kHz to 500 kHz at a constant pulse energy of 18 μJ. The formation of ablation depth, ablation width and amorphous layer thickness was taken as the standard for evaluating the effectiveness of the proposed methodology. The experimental results revealed the formation of a higher ablation depth of 6.6 μm and an amorphous layer thickness of 0.039 μm for uncoated silicon material. Whereas, in the case of coated silicon material the ablation depth was found to be 3.199 μm with an amorphous layer thickness of 0.101 μm. This justified the applicability of the ultrafast pulse laser inscription technique for achieving quality microchannels having higher depth on silicon material without any surface coating. The underlying mechanism for the improved performance is due to the low temporal separation (μs) property of ultrafast lasers which results in negligible heat diffusion into the bulk material, thereby minimizing the collateral thermal damages. This was further proved based on an analytical model by evaluating the surface temperature at various repetition rates. The experimental and analytical results from the present work will be highly beneficial for the electronic industry, where the laser micro structuring of MEMS components made of silicon material is highly challenging due to its reflective property.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单的皮皮虾完成签到 ,获得积分10
22秒前
22秒前
月亮门完成签到 ,获得积分10
28秒前
baozi发布了新的文献求助10
29秒前
1分钟前
1分钟前
1分钟前
Akim应助安详宛筠采纳,获得10
1分钟前
2分钟前
安详宛筠发布了新的文献求助10
2分钟前
原子格致完成签到 ,获得积分10
2分钟前
安详宛筠完成签到,获得积分10
2分钟前
2分钟前
Aimee完成签到 ,获得积分10
2分钟前
qingshu发布了新的文献求助10
2分钟前
qingshu完成签到,获得积分10
2分钟前
3分钟前
1Yer6完成签到 ,获得积分10
3分钟前
英喆完成签到 ,获得积分10
3分钟前
ycool完成签到 ,获得积分10
3分钟前
伯赏芷烟完成签到,获得积分10
5分钟前
睡觉补充能量完成签到,获得积分10
5分钟前
6分钟前
7分钟前
7分钟前
搜集达人应助Dr_WongRunFong采纳,获得10
7分钟前
Esperanza完成签到,获得积分10
7分钟前
Dr_WongRunFong完成签到,获得积分10
8分钟前
Wei发布了新的文献求助10
8分钟前
8分钟前
kkkk发布了新的文献求助10
8分钟前
8分钟前
领导范儿应助小小果妈采纳,获得10
8分钟前
大模型应助dkswy采纳,获得10
9分钟前
9分钟前
9分钟前
好好学习完成签到,获得积分20
9分钟前
9分钟前
好好学习发布了新的文献求助10
9分钟前
9分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211034
求助须知:如何正确求助?哪些是违规求助? 4387624
关于积分的说明 13663026
捐赠科研通 4247643
什么是DOI,文献DOI怎么找? 2330421
邀请新用户注册赠送积分活动 1328191
关于科研通互助平台的介绍 1281017