On the characteristics analysis and tab design of an 18650 type cylindrical LiFePO4 battery

电池(电) 磷酸铁锂 材料科学 电压 锂离子电池 欧姆接触 电化学 电极 核工程 内阻 泄流深度 集电器 极化(电化学) 发热 热的 接触电阻 功率密度 电气工程 复合材料 工程类 化学 热力学 物理 功率(物理) 物理化学 图层(电子)
作者
Chengshuai Li,Hongya Zhang,Runjie Zhang,Yixin Lin,Haisheng Fang
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:182: 116144-116144 被引量:20
标识
DOI:10.1016/j.applthermaleng.2020.116144
摘要

Lithium-ion (Li-ion) battery is the most promising power source for electric vehicles (EVs) due to its superior advantages of a higher power density, longer lifespan, and lower self-discharge rate. The driving capacity of EVs is critically dependent on the battery performance. In the paper, a fully coupled two-dimensional (2D) electrochemical-thermal model for a commercial 18650 cylindrical lithium iron phosphate (LiFePO4, LFP) battery that considers the contact resistance between the current collectors and electrodes is developed to describe the Li-ion battery performance. The model is validated by experimental data, and is then used to explore local detailed electrochemical-thermal characteristics under different discharge rates and the effects of the tab design. The electrochemical phenomena include the edge effect, which represents the inhomogeneity inside the battery, and the polarization voltage, which depends on both the depth of discharge (DOD) and discharge rates. It is revealed that the polarization heat and the heat generated from the positive electrodes are dominant under a low discharge rate. The ohmic heat and contact resistance heat, as well as the heat generated by the positive current collector, become the most important at a high discharge rate. The effects of the tab design on the battery performance are further investigated, and it is found that the design with the positive tab arranged in the middle of the positive current collector exhibits a much better performance than the traditional design; its maximum temperature is 4.8 °C lower, its voltage platform is 0.05 V higher, and its internal resistance is 5.5 mΩ lower under the 5C discharge rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JamesPei应助嘞是举仔采纳,获得10
2秒前
2秒前
共享精神应助伶俐的小卓采纳,获得10
2秒前
香蕉觅云应助贪玩丑采纳,获得10
3秒前
3秒前
香蕉觅云应助星海拾贝者采纳,获得10
3秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
齐天大圣完成签到,获得积分10
7秒前
华仔应助嘻嘻采纳,获得10
7秒前
ALLEN发布了新的文献求助10
7秒前
7秒前
zhonghang2024应助蓝白胖次哇采纳,获得10
8秒前
8秒前
8秒前
9秒前
玛卡发布了新的文献求助10
10秒前
11秒前
Freedom完成签到,获得积分10
11秒前
11秒前
齐天大圣发布了新的文献求助10
13秒前
JamesPei应助大胆的飞扬采纳,获得10
13秒前
碧蓝俊驰完成签到,获得积分10
15秒前
强子今天读文献了嘛完成签到,获得积分10
15秒前
hahaha完成签到 ,获得积分10
15秒前
15秒前
伶俐的小卓完成签到,获得积分10
15秒前
LSY发布了新的文献求助10
16秒前
深情安青应助北木南采纳,获得10
16秒前
慕容生完成签到,获得积分10
16秒前
16秒前
Reece完成签到,获得积分10
17秒前
18秒前
Hello应助Lmy采纳,获得10
18秒前
19秒前
爆米花应助Dean采纳,获得30
20秒前
善学以致用应助wr采纳,获得10
20秒前
清秀晓筠发布了新的文献求助30
20秒前
kai chen应助Mr采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633215
求助须知:如何正确求助?哪些是违规求助? 4728654
关于积分的说明 14985295
捐赠科研通 4791156
什么是DOI,文献DOI怎么找? 2558773
邀请新用户注册赠送积分活动 1519196
关于科研通互助平台的介绍 1479516