亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A machine learning-based diagnostic model associated with knee osteoarthritis severity

沃马克 骨关节炎 物理疗法 回归分析 线性回归 步态 医学 方差分析 物理医学与康复 相关性 随机森林 人工智能 机器学习 数学 计算机科学 内科学 病理 替代医学 几何学
作者
Soon Bin Kwon,Yunseo Ku,Hyuk-Soo Han,Myung Chul Lee,Hee Chan Kim,Du Hyun Ro
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:10 (1) 被引量:41
标识
DOI:10.1038/s41598-020-72941-4
摘要

Abstract Knee osteoarthritis (KOA) is characterized by pain and decreased gait function. We aimed to find KOA-related gait features based on patient reported outcome measures (PROMs) and develop regression models using machine learning algorithms to estimate KOA severity. The study included 375 volunteers with variable KOA grades. The severity of KOA was determined using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). WOMAC scores were used to classify disease severity into three groups. A total of 1087 features were extracted from the gait data. An ANOVA and student’s t-test were performed and only features that were significant were selected for inclusion in the machine learning algorithm. Three WOMAC subscales (physical function, pain and stiffness) were further divided into three classes. An ANOVA was performed to determine which selected features were significantly related to the subscales. Both linear regression models and a random forest regression was used to estimate patient the WOMAC scores. Forty-three features were selected based on ANOVA and student’s t-test results. The following number of features were selected from each joint: 12 from hip, 1 feature from pelvic, 17 features from knee, 9 features from ankle, 1 feature from foot, and 3 features from spatiotemporal parameters. A significance level of < 0.0001 and < 0.00003 was set for the ANOVA and t-test, respectively. The physical function, pain, and stiffness subscales were related to 41, 10, and 16 features, respectively. Linear regression models showed a correlation of 0.723 and the machine learning algorithm showed a correlation of 0.741. The severity of KOA was predicted by gait analysis features, which were incorporated to develop an objective estimation model for KOA severity. The identified features may serve as a tool to guide rehabilitation and progress assessments. In addition, the estimation model presented here suggests an approach for clinical application of gait analysis data for KOA evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KSung完成签到 ,获得积分10
4秒前
11秒前
草木完成签到,获得积分10
46秒前
47秒前
葛力发布了新的文献求助10
53秒前
56秒前
1分钟前
小菜鸡发布了新的文献求助10
1分钟前
江上烟完成签到,获得积分10
1分钟前
小马甲应助小菜鸡采纳,获得10
1分钟前
lalala完成签到,获得积分10
1分钟前
调皮傲易完成签到 ,获得积分10
1分钟前
江上烟发布了新的文献求助30
1分钟前
小菜鸡完成签到,获得积分10
1分钟前
田様应助ivyjianjie采纳,获得10
1分钟前
科目三应助yuanweisun采纳,获得10
1分钟前
2分钟前
2分钟前
yuanweisun发布了新的文献求助10
2分钟前
酷波er应助ZHY采纳,获得10
2分钟前
ivyjianjie完成签到,获得积分10
2分钟前
2分钟前
ivyjianjie发布了新的文献求助10
2分钟前
nadia完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
思源应助qiqi1111采纳,获得10
3分钟前
小易发布了新的文献求助20
3分钟前
3分钟前
qiqi1111发布了新的文献求助10
3分钟前
anne完成签到 ,获得积分10
3分钟前
3分钟前
豆乳米麻薯完成签到 ,获得积分10
3分钟前
xin完成签到 ,获得积分10
3分钟前
Rashalin完成签到,获得积分0
3分钟前
3分钟前
ZHY发布了新的文献求助10
4分钟前
yq完成签到 ,获得积分10
4分钟前
上官若男应助海岢采纳,获得10
4分钟前
4分钟前
小摩尔完成签到,获得积分10
4分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736624
求助须知:如何正确求助?哪些是违规求助? 3280584
关于积分的说明 10020070
捐赠科研通 2997270
什么是DOI,文献DOI怎么找? 1644507
邀请新用户注册赠送积分活动 782041
科研通“疑难数据库(出版商)”最低求助积分说明 749648