已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spectral features based convolutional neural network for accurate and prompt identification of schizophrenic patients

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 鉴定(生物学) 分割 时域 频域 背景(考古学) 脑电图 特征提取 语音识别 心理学 计算机视觉 古生物学 植物 精神科 生物
作者
Kuldeep Singh,Sukhjeet Singh,Jyoteesh Malhotra
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part H: Journal Of Engineering In Medicine [SAGE]
卷期号:235 (2): 167-184 被引量:67
标识
DOI:10.1177/0954411920966937
摘要

Schizophrenia is a fatal mental disorder, which affects millions of people globally by the disturbance in their thinking, feeling and behaviour. In the age of the internet of things assisted with cloud computing and machine learning techniques, the computer-aided diagnosis of schizophrenia is essentially required to provide its patients with an opportunity to own a better quality of life. In this context, the present paper proposes a spectral features based convolutional neural network (CNN) model for accurate identification of schizophrenic patients using spectral analysis of multichannel EEG signals in real-time. This model processes acquired EEG signals with filtering, segmentation and conversion into frequency domain. Then, given frequency domain segments are divided into six distinct spectral bands like delta, theta-1, theta-2, alpha, beta and gamma. The spectral features including mean spectral amplitude, spectral power and Hjorth descriptors (Activity, Mobility and Complexity) are extracted from each band. These features are independently fed to the proposed spectral features-based CNN and long short-term memory network (LSTM) models for classification. This work also makes use of raw time-domain and frequency-domain EEG segments for classification using temporal CNN and spectral CNN models of same architectures respectively. The overall analysis of simulation results of all models exhibits that the proposed spectral features based CNN model is an efficient technique for accurate and prompt identification of schizophrenic patients among healthy individuals with average classification accuracies of 94.08% and 98.56% for two different datasets with optimally small classification time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OliverW完成签到,获得积分10
1秒前
2秒前
勺子爱西瓜完成签到,获得积分10
2秒前
闪闪的梦柏完成签到 ,获得积分10
4秒前
春华秋实完成签到,获得积分10
6秒前
鹿雅彤完成签到 ,获得积分10
8秒前
赵琪发布了新的文献求助10
8秒前
kjding完成签到,获得积分10
8秒前
脸就是黑啊完成签到,获得积分10
10秒前
11秒前
疯狂喵完成签到 ,获得积分10
11秒前
12秒前
www发布了新的文献求助10
13秒前
香蕉觅云应助ldld采纳,获得10
13秒前
鹿小新完成签到 ,获得积分10
14秒前
Singularity应助car子采纳,获得10
14秒前
领导范儿应助赵琪采纳,获得10
15秒前
biodon发布了新的文献求助10
16秒前
曹沛岚完成签到,获得积分10
17秒前
彭于晏应助hushan53采纳,获得10
17秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得30
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
bkagyin应助科研通管家采纳,获得10
20秒前
思源应助科研通管家采纳,获得10
20秒前
20秒前
酷波er应助www采纳,获得10
22秒前
zeroy完成签到,获得积分10
22秒前
23秒前
23秒前
苏木完成签到 ,获得积分10
23秒前
Lychee完成签到 ,获得积分10
24秒前
24秒前
biodon完成签到,获得积分10
28秒前
ldld发布了新的文献求助10
29秒前
31秒前
宜醉宜游宜睡应助car子采纳,获得10
33秒前
hzc完成签到,获得积分0
35秒前
YOLO完成签到 ,获得积分10
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314323
求助须知:如何正确求助?哪些是违规求助? 2946571
关于积分的说明 8530851
捐赠科研通 2622316
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665310
邀请新用户注册赠送积分活动 650838