清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning for Prediction of Cancer-Associated Venous Thromboembolism

医学 内科学 癌症 血栓形成 肿瘤科 队列 肺栓塞 部分凝血活酶时间 体质指数 外科 血小板
作者
Simon Mantha,Andrew Dunbar,Kelly L. Bolton,Sean M. Devlin,Dmitriy Gorenshteyn,Mark T.A. Donoghue,Maria E. Arcila,Gerald A. Soff
出处
期刊:Blood [Elsevier BV]
卷期号:136 (Supplement 1): 37-37 被引量:1
标识
DOI:10.1182/blood-2020-138579
摘要

Background: Several clinical prediction scores have been designed to assess the risk of cancer-associated thrombosis (CAT). The most commonly used in current clinical practice is the Khorana score, however it is applicable only to patients prior to initiation of chemotherapy. We now apply machine learning with clinical, demographic, and genomics parameters to predict CAT events. Methods: The random survival forest (RSF) ensemble learning method was selected to illustrate a machine approach to CAT prediction. The cohort consisted of 14,223 individuals with a solid tumor malignancy and MSK IMPACT somatic genomic data collected during the years 2014 to 2016. CAT was defined as the diagnosis of lower extremity deep vein thrombosis (proximal or distal) or pulmonary embolism, incidental or symptomatic. Covariates considered for inclusion in the model consisted of tumor type, metastatic status, age, exposure to cytotoxic chemotherapy in the month before cohort entry, time elapsed since cancer diagnosis, time elapsed since tumor sampling, normalized mean blood cell counts (white cell count, hemoglobin, platelet count) in the prior 3 months, normalized mean prothrombin time (PT) and activated partial thromboplastin time (aPTT) in the prior 3 months, body mass index (BMI), and presence or absence of a somatic genetic alteration for oncogenes/tumor suppressor genes with an alteration frequency ≥ 1.5% (n = 56). The primary endpoint consisted of time to CAT episode. The C-index for models including different covariates was derived from the test holdout sample using repeated 10-fold cross-validation. The C-index, measuring the relative agreement between the RSF predicted risk and the CAT times of patients, has values between 0.5 and 1.0 with the latter indicating perfect agreement. Results: 12,040 patients were included in the final analysis. There were 855 CAT events during the observation period. The most common tumor types were lung (17%), breast (15%) and colorectal cancer (9%). Blood cell count data and coagulation parameters were missing for 8% and 51% of patients respectively. Using cross-validation, the baseline model with cancer type and metastatic status had a C-index of 0.62 (95% CI = 0.61-0.64), which increased to 0.65 (95% CI = 0.63-0.66) with the addition of chemotherapy, age, time from tissue sampling, time from cancer diagnosis and BMI. Further adding genetic data increased the C-index to 0.68 (95% CI = 0.66-0.69). Replacing genetic data in this model with cell counts and coagulation parameters resulted in a C-index of 0.69 (95% CI = 0.68-0.70). The model with all available covariates had a C-index of 0.70 (95% CI = 0.69-0.71). The cumulative incidence of CAT at 6 months for 5 categories of predicted risk using the model with all available covariates is plotted in Figure A. Scaled Ishwaran-Kogalur Variable Importance (VIMP) values, presented in Figure B, indicate that cancer type and prior chemotherapy are the two top factors for model performance. Conclusions: Machine learning is a promising approach in the search of more accurate and generalizable models for prediction of CAT. In the application described here, the use of random survival forests performed well without information about future chemotherapy administration. Additional work is needed to identify the optimal algorithm and covariates, including better delineation of which cancer genomic information should be retained. Future models will have to be validated independently before being used for patient care. Disclosures Mantha: Physicians Education Resource: Honoraria; MJH Associates: Honoraria. Bolton:GRAIL: Research Funding. Soff:Bristol-Myers Squibb, Pfizer: Honoraria; Dova Pharmaceuticals: Honoraria; Janssen Scientific Affairs: Honoraria; Amgen: Research Funding; Janssen Scientific Affairs: Research Funding; Amgen: Honoraria; Dova Pharmaceuticals: Research Funding.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
songge完成签到,获得积分10
18秒前
vitamin完成签到 ,获得积分10
33秒前
默11完成签到 ,获得积分10
40秒前
跳跃的鹏飞完成签到 ,获得积分10
46秒前
Joan_89完成签到,获得积分10
47秒前
Luanyb完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Regina完成签到 ,获得积分10
1分钟前
西瓜完成签到 ,获得积分10
1分钟前
1分钟前
坦率雪枫完成签到 ,获得积分10
1分钟前
1分钟前
吴晓娟完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
YWang完成签到,获得积分20
2分钟前
2分钟前
安安爱阎魔完成签到,获得积分10
2分钟前
Freya发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
通科研完成签到 ,获得积分10
3分钟前
fogsea完成签到,获得积分0
3分钟前
tsntn完成签到,获得积分10
3分钟前
fdwang完成签到 ,获得积分10
3分钟前
3分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
alanbike完成签到,获得积分10
3分钟前
hhh2018687完成签到,获得积分10
3分钟前
iShine完成签到 ,获得积分10
3分钟前
小米稀饭完成签到 ,获得积分10
3分钟前
橙子完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
葫芦芦芦完成签到 ,获得积分10
4分钟前
xfy完成签到,获得积分10
4分钟前
ChatGPT发布了新的文献求助10
4分钟前
zhuosht完成签到 ,获得积分10
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015451
求助须知:如何正确求助?哪些是违规求助? 3555379
关于积分的说明 11318024
捐赠科研通 3288651
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812012