Machine Learning for Prediction of Cancer-Associated Venous Thromboembolism

医学 内科学 癌症 血栓形成 肿瘤科 队列 肺栓塞 部分凝血活酶时间 体质指数 外科 血小板
作者
Simon Mantha,Andrew Dunbar,Kelly L. Bolton,Sean M. Devlin,Dmitriy Gorenshteyn,Mark T.A. Donoghue,Maria E. Arcila,Gerald A. Soff
出处
期刊:Blood [American Society of Hematology]
卷期号:136 (Supplement 1): 37-37 被引量:1
标识
DOI:10.1182/blood-2020-138579
摘要

Background: Several clinical prediction scores have been designed to assess the risk of cancer-associated thrombosis (CAT). The most commonly used in current clinical practice is the Khorana score, however it is applicable only to patients prior to initiation of chemotherapy. We now apply machine learning with clinical, demographic, and genomics parameters to predict CAT events. Methods: The random survival forest (RSF) ensemble learning method was selected to illustrate a machine approach to CAT prediction. The cohort consisted of 14,223 individuals with a solid tumor malignancy and MSK IMPACT somatic genomic data collected during the years 2014 to 2016. CAT was defined as the diagnosis of lower extremity deep vein thrombosis (proximal or distal) or pulmonary embolism, incidental or symptomatic. Covariates considered for inclusion in the model consisted of tumor type, metastatic status, age, exposure to cytotoxic chemotherapy in the month before cohort entry, time elapsed since cancer diagnosis, time elapsed since tumor sampling, normalized mean blood cell counts (white cell count, hemoglobin, platelet count) in the prior 3 months, normalized mean prothrombin time (PT) and activated partial thromboplastin time (aPTT) in the prior 3 months, body mass index (BMI), and presence or absence of a somatic genetic alteration for oncogenes/tumor suppressor genes with an alteration frequency ≥ 1.5% (n = 56). The primary endpoint consisted of time to CAT episode. The C-index for models including different covariates was derived from the test holdout sample using repeated 10-fold cross-validation. The C-index, measuring the relative agreement between the RSF predicted risk and the CAT times of patients, has values between 0.5 and 1.0 with the latter indicating perfect agreement. Results: 12,040 patients were included in the final analysis. There were 855 CAT events during the observation period. The most common tumor types were lung (17%), breast (15%) and colorectal cancer (9%). Blood cell count data and coagulation parameters were missing for 8% and 51% of patients respectively. Using cross-validation, the baseline model with cancer type and metastatic status had a C-index of 0.62 (95% CI = 0.61-0.64), which increased to 0.65 (95% CI = 0.63-0.66) with the addition of chemotherapy, age, time from tissue sampling, time from cancer diagnosis and BMI. Further adding genetic data increased the C-index to 0.68 (95% CI = 0.66-0.69). Replacing genetic data in this model with cell counts and coagulation parameters resulted in a C-index of 0.69 (95% CI = 0.68-0.70). The model with all available covariates had a C-index of 0.70 (95% CI = 0.69-0.71). The cumulative incidence of CAT at 6 months for 5 categories of predicted risk using the model with all available covariates is plotted in Figure A. Scaled Ishwaran-Kogalur Variable Importance (VIMP) values, presented in Figure B, indicate that cancer type and prior chemotherapy are the two top factors for model performance. Conclusions: Machine learning is a promising approach in the search of more accurate and generalizable models for prediction of CAT. In the application described here, the use of random survival forests performed well without information about future chemotherapy administration. Additional work is needed to identify the optimal algorithm and covariates, including better delineation of which cancer genomic information should be retained. Future models will have to be validated independently before being used for patient care. Disclosures Mantha: Physicians Education Resource: Honoraria; MJH Associates: Honoraria. Bolton:GRAIL: Research Funding. Soff:Bristol-Myers Squibb, Pfizer: Honoraria; Dova Pharmaceuticals: Honoraria; Janssen Scientific Affairs: Honoraria; Amgen: Research Funding; Janssen Scientific Affairs: Research Funding; Amgen: Honoraria; Dova Pharmaceuticals: Research Funding.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助健忘溪流采纳,获得10
1秒前
tiantian完成签到,获得积分10
1秒前
LL发布了新的文献求助10
1秒前
巅峰囚冰完成签到,获得积分10
1秒前
大壮发布了新的文献求助10
2秒前
左手树完成签到,获得积分10
3秒前
隐形曼青应助123采纳,获得10
4秒前
领导范儿应助fox采纳,获得10
4秒前
5秒前
Xiong完成签到,获得积分10
5秒前
xiaolong完成签到,获得积分10
6秒前
9秒前
张文淇发布了新的文献求助20
9秒前
laoli2022完成签到,获得积分10
10秒前
酷波er应助暴躁的小凝采纳,获得10
12秒前
26完成签到,获得积分10
13秒前
13秒前
sy完成签到,获得积分20
13秒前
Nature完成签到,获得积分10
14秒前
华仔应助吴大打采纳,获得10
14秒前
15秒前
15秒前
zjzjzjzjzj完成签到 ,获得积分10
15秒前
知世耶完成签到 ,获得积分10
16秒前
复成完成签到 ,获得积分10
16秒前
灵试巧开完成签到 ,获得积分10
16秒前
小小发布了新的文献求助10
17秒前
科研通AI2S应助吉吉采纳,获得10
17秒前
雨纷纷完成签到,获得积分10
18秒前
18秒前
西柚完成签到,获得积分10
18秒前
翻似烂柯人完成签到,获得积分10
18秒前
19秒前
李二二发布了新的文献求助30
19秒前
tiantian发布了新的文献求助10
19秒前
19秒前
hehe发布了新的文献求助10
19秒前
kanoz发布了新的文献求助10
21秒前
蒙豆儿发布了新的文献求助10
21秒前
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153624
求助须知:如何正确求助?哪些是违规求助? 2804769
关于积分的说明 7861576
捐赠科研通 2462781
什么是DOI,文献DOI怎么找? 1310981
科研通“疑难数据库(出版商)”最低求助积分说明 629428
版权声明 601809