From algae to vascular plants: The multistep evolutionary trajectory of the ALDH superfamily towards functional promiscuity and the emergence of structural characteristics

醛脱氢酶 生物 生物化学 氨基酸 基因
作者
Naïm Stiti,Valentino Giarola,Dorothea Bartels
出处
期刊:Environmental and Experimental Botany [Elsevier]
卷期号:185: 104376-104376 被引量:17
标识
DOI:10.1016/j.envexpbot.2021.104376
摘要

Aldehyde dehydrogenases (ALDHs) constitute an evolutionary conserved superfamily of oxidoreductases, which convert a large array of aldehydes to carboxylic acids. Plant ALDHs caught attention in the last two decades after the discovery of their central role in the adaptive responses to abiotic stress. Recent advances in next-generation sequencing and genome assembly enabled us to identify many ALDH genes of plants from diverse lineages. This provided valuable clues to trace their evolutionary trajectory. The ALDH superfamily has ancient origins that go back to the chromista kingdom. Major evolutionary events like the conquest of land by plants, and later their vascularization, along with the acquisition of developmental complexity coincide with important changes in the abundance, expansion, and diversification of ALDH genes and proteins. Plant ALDH sequences divergence led to the emergence of functions, absent in their algal ancestors. The most evolved, higher plant ALDHs have functional promiscuity which positioned them as important ‘hubs’ at the crossroads of the primary/basal and the stress-related metabolism. Stress-responsive ALDHs mitigate the harmful effect of cytotoxic aldehydes resulting from lipid peroxidation occurring during oxidative stress and contribute to the synthesis of osmolytes, like glycine betaine. Other isoforms play significant roles in glycolysis, TCA cycle, and amino acid catabolism. Therefore, plant ALDHs are attractive targets for molecular breeding of stress tolerant plants. The overall three-dimensional structures and the catalytic mechanism of ALDHs are conserved in prokaryotes, mammalians, and plants. However, some amino acids at specific locations, underwent progressive changes in the course of the evolution of plantae, yielding shifts in the enzymatic properties, including substrate and cofactor specificities. We explore data related to the evolutionary history of ALDHs, gather information about their biochemical functions, and discuss their physiological relevance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助专注的大米采纳,获得30
刚刚
WO完成签到,获得积分10
1秒前
1秒前
星夜发布了新的文献求助10
1秒前
2秒前
天天快乐应助hajy采纳,获得10
2秒前
落寞的蜡烛完成签到,获得积分10
2秒前
3秒前
Sivan发布了新的文献求助10
3秒前
科研通AI5应助境界的彼岸采纳,获得10
3秒前
3秒前
Suica完成签到 ,获得积分10
3秒前
老迟的新瑶完成签到 ,获得积分10
4秒前
共享精神应助是是是采纳,获得10
4秒前
活在当下完成签到,获得积分10
4秒前
石幻枫完成签到 ,获得积分10
4秒前
顺利的战斗机完成签到,获得积分10
4秒前
4秒前
AnnChen发布了新的文献求助10
5秒前
gaga完成签到,获得积分10
6秒前
andrele发布了新的文献求助10
6秒前
idXin_Qing发布了新的文献求助30
7秒前
哈哈发布了新的文献求助10
7秒前
李梦茹关注了科研通微信公众号
7秒前
8秒前
清爽的凤发布了新的文献求助10
8秒前
坚定的铃铛应助jason采纳,获得10
9秒前
10秒前
Ava应助ZZY采纳,获得10
10秒前
Lizhenzhen123完成签到,获得积分10
11秒前
AnnChen完成签到,获得积分10
11秒前
科研逆蝶完成签到,获得积分10
12秒前
13秒前
14秒前
Lizhenzhen123发布了新的文献求助10
14秒前
CodeCraft应助苹果易真采纳,获得10
14秒前
斯文败类应助jackdu采纳,获得10
15秒前
pK发布了新的文献求助10
17秒前
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561075
求助须知:如何正确求助?哪些是违规求助? 3134842
关于积分的说明 9409879
捐赠科研通 2835055
什么是DOI,文献DOI怎么找? 1558395
邀请新用户注册赠送积分活动 728129
科研通“疑难数据库(出版商)”最低求助积分说明 716696