Predicting myometrial invasion in endometrial cancer based on whole-uterine magnetic resonance radiomics

磁共振成像 医学 接收机工作特性 子宫内膜癌 逻辑回归 核医学 矢状面 放射科 诊断准确性 癌症 内科学
作者
Yaling Han,Xu Han,Ying Ming,Renjie Li,Chencui Huang,Jingxu Xu,Jie Zhang,Yan Li
出处
期刊:Journal of Cancer Research and Therapeutics 卷期号:16 (7): 1648-1648 被引量:15
标识
DOI:10.4103/jcrt.jcrt_1393_20
摘要

The objective of this study was to evaluate whether whole-uterine magnetic resonance imaging (MRI) radiomic features can predict myometrial invasion (MI) depth in endometrial cancer (EC).The preoperative 3.0 T magnetic resonance examinations of EC patients were retrospectively reviewed. Whole-uterus segmentation was performed, and features were extracted based on sagittal T2-weighted imaging (T2WI) and axial diffusion-weighted imaging (DWI). The logistic regression (LR) classifier algorithm was used to establish the radiomic model, which was verified by ten times five-fold cross-validation. The areas under the receiver operating characteristic (ROC) curves (AUCs) were assessed by the DeLong test to compare differences among the models based on different sequences. The LR model was compared with the subjective diagnosis results by the Chi-square test.Of the 163 EC patients included, 44 had deep myometrial invasion (DMI). The feature consistency of the whole uterus was higher than that of the lesion (P < 0.05). The sagittal T2WI, axial DWI, and combined models had AUCs of 0.76, 0.80, and 0.85 in the validation set, respectively. The DeLong test showed that there were no significant differences in AUCs among the models (P > 0.05). The single-sequence LR models had lower specificity and accuracy than the corresponding subjective diagnostic results (P < 0.05), while the sensitivity was higher (P > 0.05). The combined model included 24 radiomic features, and the accuracy, sensitivity, and specificity were 0.83, 0.77, and 0.85 for DMI, respectively. There was no significant difference compared with subjective diagnosis (P > 0.05).Whole-uterine MRI radiomic features based on sagittal T2WI and axial DWI show potential in predicting MI in EC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小七发布了新的文献求助10
1秒前
1秒前
cyl发布了新的文献求助100
1秒前
今后应助小孙采纳,获得10
2秒前
2秒前
3秒前
加菲丰丰举报求助违规成功
4秒前
柔弱友卉举报求助违规成功
4秒前
Singularity举报求助违规成功
4秒前
4秒前
李海平发布了新的文献求助10
6秒前
biocreater发布了新的文献求助10
6秒前
6秒前
W雩完成签到 ,获得积分10
8秒前
拒绝要说No完成签到,获得积分10
8秒前
朝阳发布了新的文献求助10
9秒前
开朗的又亦完成签到,获得积分10
12秒前
yeonjun完成签到 ,获得积分10
13秒前
13秒前
赵纤完成签到,获得积分10
14秒前
14秒前
GUGU发布了新的文献求助10
16秒前
阳光永在完成签到,获得积分10
16秒前
小花生发布了新的文献求助10
16秒前
Valky发布了新的文献求助10
17秒前
果力成完成签到,获得积分10
18秒前
小孙发布了新的文献求助10
18秒前
michaeleh发布了新的文献求助10
18秒前
ALEX发布了新的文献求助10
20秒前
小二郎应助sunyafei采纳,获得10
22秒前
义气珩完成签到,获得积分10
25秒前
26秒前
Jasper应助Valky采纳,获得10
26秒前
今后应助犹豫成风采纳,获得10
27秒前
30秒前
大模型应助adcc102采纳,获得10
30秒前
30秒前
无限无心发布了新的文献求助10
32秒前
111完成签到,获得积分10
32秒前
33秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462718
求助须知:如何正确求助?哪些是违规求助? 3056227
关于积分的说明 9051055
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506627
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695700