催化作用
氧化剂
烟气脱硫
化学
锰
介孔材料
无机化学
吡啶
咔唑
核化学
硫黄
有机化学
作者
Sidra Subhan,Yaseen Muhammad,Bashir Ahmad,Zhangfa Tong,Fazle Subhan,Waqas Ahmad,Maria Sahibzada
标识
DOI:10.1016/j.jece.2021.105179
摘要
In this study, Manganese oxide nanoparticles (MnO2 NPs) are deposited over Zr-based UiO-66 molecular organic framework (MOF) resulting in MnO2/UiO-66 composite which is oxidized with NaClO for the catalytic oxidative desulfurization and denitrogenation of fuel oil. The as-synthesized composites were characterized via FE-SEM, EDX, BET, XPS and FT-IR techniques which confirmed the uniform deposition of MnO2 NPs and resulted in increased surface area and average mesoporous volume of pristine UiO-66. Catalytic results showed that MnO2/UiO-66 oxidized 2000 ppm of DBT (347 ppm Sulfur) and pyridine (502.8 ppm Nitrogen) in 3 min at O/S and O/N of 4, 0.06 g/15 mL catalyst dose and 25 °C. The mechanism behind the super-fast and highly efficacious performance of MnO2/UiO-66 is the ideal synergy among Mn4+, Zr4+ and NaClO species, which produced strong oxidizing •OH and •O2− radicals. Under the optimized reaction parameters, much higher removal of DBT and pyridine (100%) was achieved as compared to those of BT, 4,6-DMDBT, indole, and carbazole up to 6th cycles. This study provided important oxidant-catalyst system i.e. MnO2/UiO-66-NaClO for the highly efficacious, super-fast, and time and cost-effective alternative to the large scale oxidative desulfurization and denitrogenation of fuel oils.
科研通智能强力驱动
Strongly Powered by AbleSci AI