已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Computer vision technology in agricultural automation —A review

自动化 农业 工程类 农业机械 计算机科学 地理 考古 机械工程
作者
Hongkun Tian,Tianhai Wang,Yadong Liu,Xi Qiao,Yanzhou Li
出处
期刊:Information Processing in Agriculture [Elsevier]
卷期号:7 (1): 1-19 被引量:439
标识
DOI:10.1016/j.inpa.2019.09.006
摘要

Computer vision is a field that involves making a machine "see". This technology uses a camera and computer instead of the human eye to identify, track and measure targets for further image processing. With the development of computer vision, such technology has been widely used in the field of agricultural automation and plays a key role in its development. This review systematically summarizes and analyzes the technologies and challenges over the past three years and explores future opportunities and prospects to form the latest reference for researchers. Through the analyses, it is found that the existing technology can help the development of agricultural automation for small field farming to achieve the advantages of low cost, high efficiency and high precision. However, there are still major challenges. First, the technology will continue to expand into new application areas in the future, and there will be more technological issues that need to be overcome. It is essential to build large-scale data sets. Second, with the rapid development of agricultural automation, the demand for professionals will continue to grow. Finally, the robust performance of related technologies in various complex environments will also face challenges. Through analysis and discussion, we believe that in the future, computer vision technology will be combined with intelligent technology such as deep learning technology, be applied to every aspect of agricultural production management based on large-scale datasets, be more widely used to solve the current agricultural problems, and better improve the economic, general and robust performance of agricultural automation systems, thus promoting the development of agricultural automation equipment and systems in a more intelligent direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助彳亍采纳,获得10
1秒前
2秒前
5秒前
活泼啤酒完成签到 ,获得积分10
5秒前
suodeheng发布了新的文献求助220
5秒前
7秒前
tuotuo完成签到 ,获得积分10
7秒前
Patrick发布了新的文献求助20
11秒前
聪明安白发布了新的文献求助10
15秒前
15秒前
剑指东方是为谁应助Karol采纳,获得10
16秒前
17秒前
17秒前
20秒前
20秒前
本微尘发布了新的文献求助10
21秒前
Ava应助要努力坚持啊采纳,获得10
21秒前
Ava应助彳亍采纳,获得10
22秒前
张杰列夫完成签到 ,获得积分10
23秒前
开开发布了新的文献求助10
24秒前
26秒前
27秒前
bkagyin应助你求我一下采纳,获得30
28秒前
Dana完成签到 ,获得积分10
28秒前
共享精神应助聪明安白采纳,获得10
28秒前
29秒前
材化小将军完成签到,获得积分10
30秒前
脑洞疼应助saangl采纳,获得10
32秒前
清风浮云完成签到,获得积分10
35秒前
36秒前
头孢西丁完成签到 ,获得积分10
38秒前
38秒前
丘比特应助本微尘采纳,获得10
39秒前
39秒前
cocolu应助HE采纳,获得30
41秒前
45秒前
45秒前
woshizhengde完成签到,获得积分10
46秒前
d22110652发布了新的文献求助10
46秒前
47秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455575
求助须知:如何正确求助?哪些是违规求助? 3050813
关于积分的说明 9022756
捐赠科研通 2739374
什么是DOI,文献DOI怎么找? 1502673
科研通“疑难数据库(出版商)”最低求助积分说明 694583
邀请新用户注册赠送积分活动 693387