已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Data-Driven Structural Health Monitoring Approach Using Guided Lamb Wave Responses

结构健康监测 兰姆波 参数统计 有限元法 还原(数学) 降维 计算机科学 领域(数学) 数据挖掘 结构工程 工程类 人工智能 数学 统计 电信 表面波 几何学 纯数学
作者
Prabhav Borate,Gang Wang,Yi Wang
出处
期刊:Journal of Aerospace Engineering [American Society of Civil Engineers]
卷期号:33 (4) 被引量:22
标识
DOI:10.1061/(asce)as.1943-5525.0001145
摘要

In this paper, a data-driven structural health monitoring (SHM) approach is proposed to conduct in situ evaluation of the structural health state, i.e., damage location and extent, in which guided Lamb wave responses at selected locations are employed. The proposed approach is composed of an offline and an online phase. The objectives of the offline phase are to carry out data dimensionality reduction and to establish the mapping relationship between sensor data and damage status. First, a comprehensive database is established via high-fidelity finite element method (FEM) simulations (ABAQUS software) to determine guided Lamb wave responses (e.g., displacement and acceleration) under various prescribed structural damage conditions. Then, the proper orthogonal decomposition (POD) method is applied to extract key features from these responses under each simulated case. Finally, a neural network-based surrogate model is developed to relate the damage status with modal coefficients of the POD. The goal of the online phase is to quantify the damage location and extent using limited sensor measurements. The gappy proper orthogonal decomposition (GPOD) is employed to reconstruct the full field information based on limited sensor data. Subsequently, the associated damage extent and location are derived by applying the surrogate model developed in the offline phase. The proposed data-driven SHM approach is comprehensively validated using simulation data harvested from both beam and plate examples. The maximum error between evaluated and actual damage values is within 10%. Parametric studies are conducted as well to investigate the effects on damage detection using different sensor placement and sensor types. In summary, the proposed approach could lead to an efficient damage detection technique for aerospace structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kawayifenm发布了新的文献求助10
1秒前
shl发布了新的文献求助10
2秒前
笔录完成签到,获得积分20
3秒前
机灵的煎蛋完成签到 ,获得积分10
4秒前
6秒前
7秒前
科研通AI5应助着急的万声采纳,获得10
7秒前
9秒前
SYLH应助可靠的初雪采纳,获得10
9秒前
kawayifenm完成签到,获得积分10
10秒前
10秒前
爱丽丝敏完成签到,获得积分10
11秒前
无花果应助hym111采纳,获得10
12秒前
ly发布了新的文献求助10
12秒前
13秒前
14秒前
16秒前
16秒前
19秒前
天真蓝应助jyy采纳,获得200
19秒前
21秒前
21秒前
喝儿何发布了新的文献求助10
22秒前
23秒前
明亮无颜发布了新的文献求助10
24秒前
李爱国应助YUKI采纳,获得10
24秒前
科研通AI5应助DE2022采纳,获得10
25秒前
hym111发布了新的文献求助10
25秒前
研友_VZG7GZ应助不爱吃海鲜采纳,获得10
26秒前
26秒前
27秒前
ajun发布了新的文献求助10
28秒前
29秒前
星河完成签到,获得积分10
31秒前
土土完成签到,获得积分10
31秒前
seven发布了新的文献求助10
31秒前
wengjiaqi发布了新的文献求助10
32秒前
踏实的傲白完成签到 ,获得积分10
33秒前
秦小荷完成签到,获得积分10
34秒前
35秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491104
求助须知:如何正确求助?哪些是违规求助? 3077781
关于积分的说明 9150387
捐赠科研通 2770232
什么是DOI,文献DOI怎么找? 1520217
邀请新用户注册赠送积分活动 704513
科研通“疑难数据库(出版商)”最低求助积分说明 702196