干涉合成孔径雷达
下沉
可靠性(半导体)
变形(气象学)
卷积神经网络
计算机科学
干涉测量
噪音(视频)
损害赔偿
深度学习
遥感
地质学
人工智能
合成孔径雷达
图像(数学)
地貌学
法学
海洋学
功率(物理)
物理
天文
构造盆地
量子力学
政治学
作者
Zhipeng Wu,Heng Zhang,Yingjie Wang,Teng Wang,Robert Wang
标识
DOI:10.1109/igarss39084.2020.9323342
摘要
Mining induced subsidence seriously damages the ecological environment and may cause casualties. Therefore, the rapid and reliable monitoring is particularly important. However, due to severe noise and dense fringes, traditional InSAR methods often severely underestimate the deformation rate. Here, we propose a new processing flow and develop two deep convolutional neural networks for fast detection and phase unwrapping of local subsidence cones. The proposed method is applied to Datong City, Shanxi Province, which is rich in mining activates. The processing results verify the reliability of the method.
科研通智能强力驱动
Strongly Powered by AbleSci AI