级联
法拉第效率
碳酸盐
碳酸乙烯酯
电化学
氧化物
无机化学
环氧乙烷
联轴节(管道)
化学
电解质
材料科学
化学工程
有机化学
工程类
冶金
电极
物理化学
色谱法
共聚物
聚合物
作者
Adnan Ozden,Yuhang Wang,Fengwang Li,Mingchuan Luo,Jared Sisler,Arnaud Thevenon,Alonso Rosas‐Hernández,Thomas Burdyny,Yanwei Lum,Hossein Yadegari,Theodor Agapie,Jonas C. Peters,Edward H. Sargent,David Sinton
出处
期刊:Joule
[Elsevier]
日期:2021-03-01
卷期号:5 (3): 706-719
被引量:195
标识
DOI:10.1016/j.joule.2021.01.007
摘要
CO2 electroreduction provides a route to convert waste emissions into chemicals such as ethylene (C2H4). However, the direct transformation of CO2-to-C2H4 suffers from CO2 loss to carbonate, consuming up to 72% of energy input. A cascade approach—coupling a solid-oxide CO2-to-CO electrochemical cell (SOEC) with a CO-to-C2H4 membrane electrode assembly (MEA)—would eliminate CO2 loss to carbonate. However, this approach requires a CO-to-C2H4 MEA with energy efficiency well beyond demonstrations to date. Focusing on the MEA, we find that an N-tolyl substituted tetrahydro-bipyridine film improves the stabilization of key reaction intermediates, while an SSC ionomer enhances CO transport to the Cu surface, enabling a C2H4 faradaic efficiency of 65% at 150 mA cm−2 for 110 h. Demonstrating a cascade SOEC-MEA approach, we achieve CO2-to-C2H4 with a ~48% reduction in energy intensity compared with the direct route. We further reduce the energy intensity by coupling CO electroreduction (CORR) with glucose electrooxidation.
科研通智能强力驱动
Strongly Powered by AbleSci AI