Multiregional-Based Magnetic Resonance Imaging Radiomics Combined With Clinical Data Improves Efficacy in Predicting Lymph Node Metastasis of Rectal Cancer

医学 磁共振成像 无线电技术 接收机工作特性 转移 结直肠癌 秩相关 放射科 回顾性队列研究 特征选择 癌症 内科学 机器学习 计算机科学
作者
Xiangchun Liu,Qi Yang,Chunyu Zhang,Jianqing Sun,Kan He,Yunming Xie,Yiying Zhang,Yu Fu,Huimao Zhang
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:10 被引量:22
标识
DOI:10.3389/fonc.2020.585767
摘要

To develop and validate a multiregional-based magnetic resonance imaging (MRI) radiomics model and combine it with clinical data for individual preoperative prediction of lymph node (LN) metastasis in rectal cancer patients.186 rectal adenocarcinoma patients from our retrospective study cohort were randomly selected as the training (n = 123) and testing cohorts (n = 63). Spearman's rank correlation coefficient and the least absolute shrinkage and selection operator were used for feature selection and dimensionality reduction. Five support vector machine (SVM) classification models were built using selected clinical and semantic variables, single-regional radiomics features, multiregional radiomics features, and combinations, for predicting LN metastasis in rectal cancer. The performance of the five SVM models was evaluated via the area under the receiver operator characteristic curve (AUC), accuracy, sensitivity, and specificity in the testing cohort. Differences in the AUCs among the five models were compared using DeLong's test.The clinical, single-regional radiomics and multiregional radiomics models showed moderate predictive performance and diagnostic accuracy in predicting LN metastasis with an AUC of 0.725, 0.702, and 0.736, respectively. A model with improved performance was created by combining clinical data with single-regional radiomics features (AUC = 0.827, (95% CI, 0.711-0.911), P = 0.016). Incorporating clinical data with multiregional radiomics features also improved the performance (AUC = 0.832 (95% CI, 0.717-0.915), P = 0.015).Multiregional-based MRI radiomics combined with clinical data can improve efficacy in predicting LN metastasis and could be a useful tool to guide surgical decision-making in patients with rectal cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FangyingTang发布了新的文献求助20
刚刚
1秒前
XL完成签到,获得积分10
1秒前
echo发布了新的文献求助10
2秒前
大模型应助ruyi采纳,获得10
2秒前
ww发布了新的文献求助10
3秒前
4秒前
5秒前
mmlikeu完成签到,获得积分10
7秒前
7秒前
8秒前
mygod发布了新的文献求助20
9秒前
乐乐应助清爽山雁采纳,获得10
10秒前
10秒前
麻衣发布了新的文献求助10
11秒前
guye完成签到,获得积分10
12秒前
slz发布了新的文献求助10
12秒前
源味怪豆完成签到,获得积分20
16秒前
17秒前
七七发布了新的文献求助10
18秒前
思源应助slz采纳,获得10
18秒前
orixero应助slz采纳,获得10
18秒前
学术裁缝完成签到,获得积分10
20秒前
21秒前
21秒前
8R60d8应助mmlikeu采纳,获得10
22秒前
斯文败类应助mmlikeu采纳,获得10
22秒前
躺平研究生完成签到,获得积分10
22秒前
cwm完成签到,获得积分10
22秒前
兔糕同学发布了新的文献求助10
24秒前
itousong发布了新的文献求助10
24秒前
25秒前
SciGPT应助liukejia采纳,获得10
26秒前
枫1538发布了新的文献求助10
26秒前
26秒前
27秒前
victorchen完成签到,获得积分10
27秒前
Lufthansa发布了新的文献求助10
27秒前
麻衣关注了科研通微信公众号
28秒前
清爽山雁发布了新的文献求助10
28秒前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165832
求助须知:如何正确求助?哪些是违规求助? 2817091
关于积分的说明 7914877
捐赠科研通 2476611
什么是DOI,文献DOI怎么找? 1319056
科研通“疑难数据库(出版商)”最低求助积分说明 632332
版权声明 602415