Multiregional-Based Magnetic Resonance Imaging Radiomics Combined With Clinical Data Improves Efficacy in Predicting Lymph Node Metastasis of Rectal Cancer

医学 磁共振成像 无线电技术 淋巴结转移 淋巴结 转移 结直肠癌 癌症影像学 前列腺癌 放射科 癌症 内科学 肿瘤科 病理
作者
Xiangchun Liu,Qi Yang,Chunyu Zhang,Jianqing Sun,Kan He,Yunming Xie,Yiying Zhang,Yu Fu,Huimao Zhang
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:10 被引量:34
标识
DOI:10.3389/fonc.2020.585767
摘要

To develop and validate a multiregional-based magnetic resonance imaging (MRI) radiomics model and combine it with clinical data for individual preoperative prediction of lymph node (LN) metastasis in rectal cancer patients.186 rectal adenocarcinoma patients from our retrospective study cohort were randomly selected as the training (n = 123) and testing cohorts (n = 63). Spearman's rank correlation coefficient and the least absolute shrinkage and selection operator were used for feature selection and dimensionality reduction. Five support vector machine (SVM) classification models were built using selected clinical and semantic variables, single-regional radiomics features, multiregional radiomics features, and combinations, for predicting LN metastasis in rectal cancer. The performance of the five SVM models was evaluated via the area under the receiver operator characteristic curve (AUC), accuracy, sensitivity, and specificity in the testing cohort. Differences in the AUCs among the five models were compared using DeLong's test.The clinical, single-regional radiomics and multiregional radiomics models showed moderate predictive performance and diagnostic accuracy in predicting LN metastasis with an AUC of 0.725, 0.702, and 0.736, respectively. A model with improved performance was created by combining clinical data with single-regional radiomics features (AUC = 0.827, (95% CI, 0.711-0.911), P = 0.016). Incorporating clinical data with multiregional radiomics features also improved the performance (AUC = 0.832 (95% CI, 0.717-0.915), P = 0.015).Multiregional-based MRI radiomics combined with clinical data can improve efficacy in predicting LN metastasis and could be a useful tool to guide surgical decision-making in patients with rectal cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低的紫完成签到,获得积分10
刚刚
晚风完成签到,获得积分10
1秒前
leishenwang完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
Sheryl完成签到,获得积分10
2秒前
缓慢晟睿完成签到,获得积分10
2秒前
细心沛山完成签到,获得积分10
2秒前
SYY完成签到,获得积分10
2秒前
Creamsoda完成签到,获得积分10
3秒前
深海鳕鱼完成签到,获得积分10
4秒前
李明涵完成签到 ,获得积分10
4秒前
坚强幼荷发布了新的文献求助10
5秒前
phw完成签到,获得积分10
5秒前
6秒前
6秒前
万能图书馆应助lixm采纳,获得10
6秒前
SYY发布了新的文献求助10
6秒前
4659完成签到 ,获得积分10
6秒前
7秒前
深情安青应助lyh采纳,获得10
7秒前
嘟嘟等文章完成签到,获得积分10
7秒前
1997_Aris发布了新的文献求助10
7秒前
心如止水完成签到,获得积分10
8秒前
张腾飞发布了新的文献求助20
8秒前
Anyemzl完成签到,获得积分10
8秒前
好学的猪发布了新的文献求助10
8秒前
小王爱看文献完成签到 ,获得积分10
8秒前
9秒前
kathy发布了新的文献求助30
10秒前
10秒前
老叶发布了新的文献求助10
11秒前
音悦台发布了新的文献求助10
11秒前
13秒前
13秒前
13秒前
13秒前
小yang发布了新的文献求助10
13秒前
13秒前
13秒前
小杨完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582