A Deep Q-Network for the Beer Game: Deep Reinforcement Learning for Inventory Optimization

强化学习 计算机科学 牛鞭效应 供应链 订单(交换) 库存(枪支) 学习迁移 运筹学 集合(抽象数据类型) 增强学习 人工智能 数学优化 供应链管理 经济 数学 机械工程 财务 政治学 法学 程序设计语言 工程类
作者
Afshin Oroojlooy,Mohammadreza Nazari,Lawrence Snyder,Martin Takáč
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (1): 285-304 被引量:99
标识
DOI:10.1287/msom.2020.0939
摘要

Problem definition: The beer game is widely used in supply chain management classes to demonstrate the bullwhip effect and the importance of supply chain coordination. The game is a decentralized, multiagent, cooperative problem that can be modeled as a serial supply chain network in which agents choose order quantities while cooperatively attempting to minimize the network’s total cost, although each agent only observes local information. Academic/practical relevance: Under some conditions, a base-stock replenishment policy is optimal. However, in a decentralized supply chain in which some agents act irrationally, there is no known optimal policy for an agent wishing to act optimally. Methodology: We propose a deep reinforcement learning (RL) algorithm to play the beer game. Our algorithm makes no assumptions about costs or other settings. As with any deep RL algorithm, training is computationally intensive, but once trained, the algorithm executes in real time. We propose a transfer-learning approach so that training performed for one agent can be adapted quickly for other agents and settings. Results: When playing with teammates who follow a base-stock policy, our algorithm obtains near-optimal order quantities. More important, it performs significantly better than a base-stock policy when other agents use a more realistic model of human ordering behavior. We observe similar results using a real-world data set. Sensitivity analysis shows that a trained model is robust to changes in the cost coefficients. Finally, applying transfer learning reduces the training time by one order of magnitude. Managerial implications: This paper shows how artificial intelligence can be applied to inventory optimization. Our approach can be extended to other supply chain optimization problems, especially those in which supply chain partners act in irrational or unpredictable ways. Our RL agent has been integrated into a new online beer game, which has been played more than 17,000 times by more than 4,000 people.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QhL完成签到,获得积分10
刚刚
1秒前
IvanLoopy发布了新的文献求助10
1秒前
1秒前
nn完成签到,获得积分10
1秒前
Shirley应助花花采纳,获得10
1秒前
2秒前
传奇3应助噜啦噜啦嘞采纳,获得10
3秒前
4秒前
LLC发布了新的文献求助10
4秒前
4秒前
4秒前
zz发布了新的文献求助10
4秒前
情怀应助可靠的咖啡采纳,获得10
4秒前
Nemo1234发布了新的文献求助10
5秒前
5秒前
6秒前
zsy发布了新的文献求助10
6秒前
6秒前
面向杂志编论文应助mi采纳,获得20
6秒前
7秒前
8秒前
猪猪包完成签到,获得积分20
8秒前
美满广缘完成签到,获得积分20
8秒前
9秒前
9秒前
9秒前
15884134873完成签到,获得积分10
10秒前
开朗松思完成签到,获得积分10
10秒前
10秒前
pcr163应助廖觅云采纳,获得10
10秒前
无花果应助范先生采纳,获得10
10秒前
密密麻麻蒙完成签到,获得积分10
10秒前
小熊发布了新的文献求助10
11秒前
LLC完成签到,获得积分10
11秒前
Nemo1234完成签到,获得积分10
11秒前
12秒前
zz完成签到,获得积分10
12秒前
12秒前
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148466
求助须知:如何正确求助?哪些是违规求助? 2799588
关于积分的说明 7836005
捐赠科研通 2456991
什么是DOI,文献DOI怎么找? 1307679
科研通“疑难数据库(出版商)”最低求助积分说明 628245
版权声明 601655