A Deep Q-Network for the Beer Game: Deep Reinforcement Learning for Inventory Optimization

强化学习 计算机科学 牛鞭效应 供应链 订单(交换) 库存(枪支) 学习迁移 运筹学 集合(抽象数据类型) 增强学习 人工智能 数学优化 供应链管理 经济 数学 机械工程 财务 政治学 法学 程序设计语言 工程类
作者
Afshin Oroojlooyjadid,Mohammadreza Nazari,Lawrence Snyder,Martin Takáč
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (1): 285-304 被引量:130
标识
DOI:10.1287/msom.2020.0939
摘要

Problem definition: The beer game is widely used in supply chain management classes to demonstrate the bullwhip effect and the importance of supply chain coordination. The game is a decentralized, multiagent, cooperative problem that can be modeled as a serial supply chain network in which agents choose order quantities while cooperatively attempting to minimize the network’s total cost, although each agent only observes local information. Academic/practical relevance: Under some conditions, a base-stock replenishment policy is optimal. However, in a decentralized supply chain in which some agents act irrationally, there is no known optimal policy for an agent wishing to act optimally. Methodology: We propose a deep reinforcement learning (RL) algorithm to play the beer game. Our algorithm makes no assumptions about costs or other settings. As with any deep RL algorithm, training is computationally intensive, but once trained, the algorithm executes in real time. We propose a transfer-learning approach so that training performed for one agent can be adapted quickly for other agents and settings. Results: When playing with teammates who follow a base-stock policy, our algorithm obtains near-optimal order quantities. More important, it performs significantly better than a base-stock policy when other agents use a more realistic model of human ordering behavior. We observe similar results using a real-world data set. Sensitivity analysis shows that a trained model is robust to changes in the cost coefficients. Finally, applying transfer learning reduces the training time by one order of magnitude. Managerial implications: This paper shows how artificial intelligence can be applied to inventory optimization. Our approach can be extended to other supply chain optimization problems, especially those in which supply chain partners act in irrational or unpredictable ways. Our RL agent has been integrated into a new online beer game, which has been played more than 17,000 times by more than 4,000 people.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Ccc完成签到,获得积分10
2秒前
李健应助自洽采纳,获得10
2秒前
gugu完成签到 ,获得积分10
2秒前
linhuafeng发布了新的文献求助10
3秒前
leng发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
cly完成签到,获得积分10
4秒前
郭优优完成签到 ,获得积分10
4秒前
呼伦贝尔大草原完成签到,获得积分10
4秒前
5秒前
李顺杰发布了新的文献求助10
5秒前
FashionBoy应助林兰特采纳,获得10
5秒前
5秒前
cc完成签到,获得积分10
6秒前
6秒前
HMF完成签到,获得积分10
6秒前
香蕉觅云应助kai采纳,获得10
6秒前
7秒前
7秒前
小鱼完成签到,获得积分10
7秒前
烦人应助路口采纳,获得10
7秒前
郭向玲发布了新的文献求助10
8秒前
CCTV完成签到,获得积分20
8秒前
沉寂的希望完成签到,获得积分10
8秒前
8秒前
亮总发布了新的文献求助10
8秒前
chigga发布了新的文献求助10
8秒前
8秒前
雨诺完成签到,获得积分10
9秒前
动人的阁发布了新的文献求助10
9秒前
9秒前
9秒前
科研小菜鸡完成签到,获得积分10
9秒前
10秒前
邢慧兰完成签到,获得积分10
10秒前
Akim应助pulq采纳,获得10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501168
关于积分的说明 11102048
捐赠科研通 3231509
什么是DOI,文献DOI怎么找? 1786448
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798