A Deep Q-Network for the Beer Game: Deep Reinforcement Learning for Inventory Optimization

强化学习 计算机科学 牛鞭效应 供应链 订单(交换) 库存(枪支) 学习迁移 运筹学 集合(抽象数据类型) 增强学习 人工智能 数学优化 供应链管理 经济 数学 机械工程 财务 政治学 法学 程序设计语言 工程类
作者
Afshin Oroojlooyjadid,Mohammadreza Nazari,Lawrence Snyder,Martin Takáč
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (1): 285-304 被引量:157
标识
DOI:10.1287/msom.2020.0939
摘要

Problem definition: The beer game is widely used in supply chain management classes to demonstrate the bullwhip effect and the importance of supply chain coordination. The game is a decentralized, multiagent, cooperative problem that can be modeled as a serial supply chain network in which agents choose order quantities while cooperatively attempting to minimize the network’s total cost, although each agent only observes local information. Academic/practical relevance: Under some conditions, a base-stock replenishment policy is optimal. However, in a decentralized supply chain in which some agents act irrationally, there is no known optimal policy for an agent wishing to act optimally. Methodology: We propose a deep reinforcement learning (RL) algorithm to play the beer game. Our algorithm makes no assumptions about costs or other settings. As with any deep RL algorithm, training is computationally intensive, but once trained, the algorithm executes in real time. We propose a transfer-learning approach so that training performed for one agent can be adapted quickly for other agents and settings. Results: When playing with teammates who follow a base-stock policy, our algorithm obtains near-optimal order quantities. More important, it performs significantly better than a base-stock policy when other agents use a more realistic model of human ordering behavior. We observe similar results using a real-world data set. Sensitivity analysis shows that a trained model is robust to changes in the cost coefficients. Finally, applying transfer learning reduces the training time by one order of magnitude. Managerial implications: This paper shows how artificial intelligence can be applied to inventory optimization. Our approach can be extended to other supply chain optimization problems, especially those in which supply chain partners act in irrational or unpredictable ways. Our RL agent has been integrated into a new online beer game, which has been played more than 17,000 times by more than 4,000 people.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小锦完成签到,获得积分10
刚刚
时尚寄真完成签到,获得积分10
刚刚
wangyali发布了新的文献求助10
刚刚
1秒前
爆米花应助友好芷蕊采纳,获得10
1秒前
2秒前
龙彦完成签到,获得积分10
3秒前
fmsai发布了新的文献求助10
3秒前
3秒前
笨笨醉薇发布了新的文献求助10
4秒前
gyd发布了新的文献求助10
4秒前
善良香岚完成签到,获得积分10
5秒前
5秒前
蜗牛完成签到,获得积分10
6秒前
6秒前
HYG发布了新的文献求助10
7秒前
Mansis发布了新的文献求助10
7秒前
时有落花至完成签到,获得积分10
7秒前
7秒前
7秒前
雾见春完成签到 ,获得积分10
8秒前
22222应助科研通管家采纳,获得30
8秒前
今后应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
平淡向雁完成签到,获得积分10
8秒前
ding应助科研通管家采纳,获得10
8秒前
wanci应助xiaoliang采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
8秒前
思源应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
谢大喵应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
魔幻的千山完成签到,获得积分10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340292
求助须知:如何正确求助?哪些是违规求助? 4476835
关于积分的说明 13932933
捐赠科研通 4372659
什么是DOI,文献DOI怎么找? 2402478
邀请新用户注册赠送积分活动 1395350
关于科研通互助平台的介绍 1367444