A Deep Q-Network for the Beer Game: Deep Reinforcement Learning for Inventory Optimization

强化学习 计算机科学 牛鞭效应 供应链 订单(交换) 库存(枪支) 学习迁移 运筹学 集合(抽象数据类型) 增强学习 人工智能 数学优化 供应链管理 经济 数学 机械工程 财务 政治学 法学 程序设计语言 工程类
作者
Afshin Oroojlooyjadid,Mohammadreza Nazari,Lawrence Snyder,Martin Takáč
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (1): 285-304 被引量:183
标识
DOI:10.1287/msom.2020.0939
摘要

Problem definition: The beer game is widely used in supply chain management classes to demonstrate the bullwhip effect and the importance of supply chain coordination. The game is a decentralized, multiagent, cooperative problem that can be modeled as a serial supply chain network in which agents choose order quantities while cooperatively attempting to minimize the network’s total cost, although each agent only observes local information. Academic/practical relevance: Under some conditions, a base-stock replenishment policy is optimal. However, in a decentralized supply chain in which some agents act irrationally, there is no known optimal policy for an agent wishing to act optimally. Methodology: We propose a deep reinforcement learning (RL) algorithm to play the beer game. Our algorithm makes no assumptions about costs or other settings. As with any deep RL algorithm, training is computationally intensive, but once trained, the algorithm executes in real time. We propose a transfer-learning approach so that training performed for one agent can be adapted quickly for other agents and settings. Results: When playing with teammates who follow a base-stock policy, our algorithm obtains near-optimal order quantities. More important, it performs significantly better than a base-stock policy when other agents use a more realistic model of human ordering behavior. We observe similar results using a real-world data set. Sensitivity analysis shows that a trained model is robust to changes in the cost coefficients. Finally, applying transfer learning reduces the training time by one order of magnitude. Managerial implications: This paper shows how artificial intelligence can be applied to inventory optimization. Our approach can be extended to other supply chain optimization problems, especially those in which supply chain partners act in irrational or unpredictable ways. Our RL agent has been integrated into a new online beer game, which has been played more than 17,000 times by more than 4,000 people.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助自由元冬采纳,获得10
1秒前
大模型应助王铎采纳,获得20
1秒前
1秒前
1秒前
yjc发布了新的文献求助10
1秒前
北海未暖完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
Eon发布了新的文献求助10
1秒前
优雅盼海完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
沉默南露发布了新的文献求助10
3秒前
煎饼发布了新的文献求助30
4秒前
4秒前
XUAN发布了新的文献求助10
4秒前
4秒前
脑洞疼应助Twinkle采纳,获得30
4秒前
4秒前
南乔完成签到,获得积分10
5秒前
苏亚婷完成签到,获得积分10
5秒前
5秒前
科研通AI6应助懵懵采纳,获得10
6秒前
科研通AI6应助lamica采纳,获得10
7秒前
hua发布了新的文献求助10
7秒前
共享精神应助雨木十八君采纳,获得10
7秒前
yuanbenshimao完成签到 ,获得积分10
7秒前
爆米花应助沉默南露采纳,获得10
7秒前
英姑应助真实的立轩采纳,获得30
8秒前
柳觅夏完成签到,获得积分10
8秒前
体贴乐巧发布了新的文献求助20
9秒前
祁忘忧发布了新的文献求助10
9秒前
稀饭完成签到,获得积分10
9秒前
9秒前
南乔发布了新的文献求助10
10秒前
okghy发布了新的文献求助10
10秒前
888关闭了888文献求助
10秒前
aq22完成签到 ,获得积分10
11秒前
深情安青应助cc采纳,获得10
11秒前
哭泣绝音完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659634
求助须知:如何正确求助?哪些是违规求助? 4829587
关于积分的说明 15087769
捐赠科研通 4818327
什么是DOI,文献DOI怎么找? 2578595
邀请新用户注册赠送积分活动 1533172
关于科研通互助平台的介绍 1491902