A Deep Q-Network for the Beer Game: Deep Reinforcement Learning for Inventory Optimization

强化学习 计算机科学 牛鞭效应 供应链 订单(交换) 库存(枪支) 学习迁移 运筹学 集合(抽象数据类型) 增强学习 人工智能 数学优化 供应链管理 经济 数学 程序设计语言 法学 工程类 财务 机械工程 政治学
作者
Afshin Oroojlooyjadid,Mohammadreza Nazari,Lawrence Snyder,Martin Takáč
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (1): 285-304 被引量:157
标识
DOI:10.1287/msom.2020.0939
摘要

Problem definition: The beer game is widely used in supply chain management classes to demonstrate the bullwhip effect and the importance of supply chain coordination. The game is a decentralized, multiagent, cooperative problem that can be modeled as a serial supply chain network in which agents choose order quantities while cooperatively attempting to minimize the network’s total cost, although each agent only observes local information. Academic/practical relevance: Under some conditions, a base-stock replenishment policy is optimal. However, in a decentralized supply chain in which some agents act irrationally, there is no known optimal policy for an agent wishing to act optimally. Methodology: We propose a deep reinforcement learning (RL) algorithm to play the beer game. Our algorithm makes no assumptions about costs or other settings. As with any deep RL algorithm, training is computationally intensive, but once trained, the algorithm executes in real time. We propose a transfer-learning approach so that training performed for one agent can be adapted quickly for other agents and settings. Results: When playing with teammates who follow a base-stock policy, our algorithm obtains near-optimal order quantities. More important, it performs significantly better than a base-stock policy when other agents use a more realistic model of human ordering behavior. We observe similar results using a real-world data set. Sensitivity analysis shows that a trained model is robust to changes in the cost coefficients. Finally, applying transfer learning reduces the training time by one order of magnitude. Managerial implications: This paper shows how artificial intelligence can be applied to inventory optimization. Our approach can be extended to other supply chain optimization problems, especially those in which supply chain partners act in irrational or unpredictable ways. Our RL agent has been integrated into a new online beer game, which has been played more than 17,000 times by more than 4,000 people.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jlm完成签到,获得积分10
刚刚
刚刚
sylvia发布了新的文献求助40
1秒前
朴素的雪瑶完成签到 ,获得积分10
1秒前
暗能量完成签到,获得积分10
1秒前
2秒前
归尘发布了新的文献求助10
2秒前
王梦秋发布了新的文献求助10
2秒前
4秒前
popvich应助玉雪晴儿采纳,获得20
4秒前
LR发布了新的文献求助10
5秒前
XXGG发布了新的文献求助20
5秒前
落花怨蝶完成签到,获得积分10
6秒前
unqiue应助小小旭呀采纳,获得10
6秒前
Morch2021发布了新的文献求助10
7秒前
8秒前
李健的小迷弟应助punker采纳,获得10
8秒前
10秒前
酷波er应助冷静的弼采纳,获得10
10秒前
sanshi100完成签到,获得积分10
11秒前
甫寸发布了新的文献求助10
11秒前
11秒前
何苗子发布了新的文献求助10
11秒前
王阳洋完成签到,获得积分10
12秒前
Akim应助蓝hj561213采纳,获得10
13秒前
Alxe完成签到,获得积分10
14秒前
Azzfy完成签到,获得积分10
14秒前
阿龙完成签到,获得积分10
14秒前
15秒前
洛羽七完成签到 ,获得积分10
15秒前
ZM发布了新的文献求助10
15秒前
追寻澜完成签到 ,获得积分10
18秒前
喜悦的开山完成签到 ,获得积分10
19秒前
导儿早日秃头完成签到,获得积分10
19秒前
19秒前
小樱颖子完成签到 ,获得积分10
20秒前
留影发布了新的文献求助10
21秒前
21秒前
zyc1111111完成签到,获得积分10
21秒前
狗都不搞的科研完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4991103
求助须知:如何正确求助?哪些是违规求助? 4239754
关于积分的说明 13208013
捐赠科研通 4034494
什么是DOI,文献DOI怎么找? 2207347
邀请新用户注册赠送积分活动 1218369
关于科研通互助平台的介绍 1136729