清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Deep Q-Network for the Beer Game: Deep Reinforcement Learning for Inventory Optimization

强化学习 计算机科学 牛鞭效应 供应链 订单(交换) 库存(枪支) 学习迁移 运筹学 集合(抽象数据类型) 增强学习 人工智能 数学优化 供应链管理 经济 数学 机械工程 财务 政治学 法学 程序设计语言 工程类
作者
Afshin Oroojlooyjadid,Mohammadreza Nazari,Lawrence Snyder,Martin Takáč
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (1): 285-304 被引量:157
标识
DOI:10.1287/msom.2020.0939
摘要

Problem definition: The beer game is widely used in supply chain management classes to demonstrate the bullwhip effect and the importance of supply chain coordination. The game is a decentralized, multiagent, cooperative problem that can be modeled as a serial supply chain network in which agents choose order quantities while cooperatively attempting to minimize the network’s total cost, although each agent only observes local information. Academic/practical relevance: Under some conditions, a base-stock replenishment policy is optimal. However, in a decentralized supply chain in which some agents act irrationally, there is no known optimal policy for an agent wishing to act optimally. Methodology: We propose a deep reinforcement learning (RL) algorithm to play the beer game. Our algorithm makes no assumptions about costs or other settings. As with any deep RL algorithm, training is computationally intensive, but once trained, the algorithm executes in real time. We propose a transfer-learning approach so that training performed for one agent can be adapted quickly for other agents and settings. Results: When playing with teammates who follow a base-stock policy, our algorithm obtains near-optimal order quantities. More important, it performs significantly better than a base-stock policy when other agents use a more realistic model of human ordering behavior. We observe similar results using a real-world data set. Sensitivity analysis shows that a trained model is robust to changes in the cost coefficients. Finally, applying transfer learning reduces the training time by one order of magnitude. Managerial implications: This paper shows how artificial intelligence can be applied to inventory optimization. Our approach can be extended to other supply chain optimization problems, especially those in which supply chain partners act in irrational or unpredictable ways. Our RL agent has been integrated into a new online beer game, which has been played more than 17,000 times by more than 4,000 people.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Zhangfu完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
20秒前
lingling完成签到 ,获得积分10
22秒前
cwanglh完成签到 ,获得积分10
28秒前
sci完成签到 ,获得积分10
31秒前
31秒前
沉沉完成签到 ,获得积分0
47秒前
48秒前
鱼鱼鱼鱼完成签到 ,获得积分10
57秒前
无花果应助科研通管家采纳,获得10
1分钟前
chcmy完成签到 ,获得积分0
1分钟前
忧伤的摩托完成签到,获得积分20
1分钟前
xmhxpz完成签到,获得积分10
1分钟前
领导范儿应助忧伤的摩托采纳,获得10
1分钟前
1分钟前
1分钟前
Nancy完成签到 ,获得积分10
1分钟前
Hong完成签到 ,获得积分10
2分钟前
Matberry完成签到 ,获得积分10
2分钟前
charih完成签到 ,获得积分10
2分钟前
蓝意完成签到,获得积分0
2分钟前
tingalan完成签到,获得积分0
2分钟前
回首不再是少年完成签到,获得积分0
2分钟前
隐形听双完成签到 ,获得积分10
2分钟前
Arctic完成签到 ,获得积分10
2分钟前
3分钟前
冰阔落完成签到 ,获得积分10
3分钟前
寡核苷酸小白完成签到 ,获得积分10
3分钟前
daomaihu完成签到,获得积分10
3分钟前
火星上的雨柏完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
雪山飞龙发布了新的文献求助10
3分钟前
迅速的幻雪完成签到 ,获得积分10
3分钟前
3分钟前
上官若男应助刻苦的如霜采纳,获得10
3分钟前
zpl完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482602
求助须知:如何正确求助?哪些是违规求助? 4583348
关于积分的说明 14389217
捐赠科研通 4512509
什么是DOI,文献DOI怎么找? 2473013
邀请新用户注册赠送积分活动 1459195
关于科研通互助平台的介绍 1432729