Boosting Factual Correctness of Abstractive Summarization with Knowledge Graph.

正确性 自动汇总 计算机科学 人工智能 自然语言处理 图形 知识图 计算 理论计算机科学 情报检索 算法
作者
Chenguang Zhu,William Hinthorn,Ruochen Xu,Qingkai Zeng,Michael Zeng,Xuedong Huang,Meng Jiang
出处
期刊:Cornell University - arXiv 被引量:18
摘要

A commonly observed problem with abstractive summarization is the distortion or fabrication of factual information in the article. This inconsistency between summary and original text has led to various concerns over its applicability. In this paper, we propose to boost factual correctness of summaries via the fusion of knowledge, i.e. extracted factual relations from the article. We present a Fact-Aware Summarization model, FASum. In this model, the knowledge information can be organically integrated into the summary generation process via neural graph computation and effectively improves the factual correctness. Empirical results show that FASum generates summaries with significantly higher factual correctness compared with state-of-the-art abstractive summarization systems, both under an independently trained factual correctness evaluator and human evaluation. For example, in CNN/DailyMail dataset, FASum obtains 1.2% higher fact correctness scores than UniLM and 4.5% higher than BottomUp.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
曾经的灵完成签到,获得积分20
1秒前
bkagyin应助小宇采纳,获得10
1秒前
许之北完成签到 ,获得积分10
1秒前
1秒前
船舵发布了新的文献求助10
1秒前
gaos完成签到,获得积分10
2秒前
念念发布了新的文献求助10
2秒前
An_mie完成签到,获得积分10
2秒前
2秒前
2秒前
Arabella完成签到,获得积分10
3秒前
HEIKU应助追梦人采纳,获得10
3秒前
3秒前
小T儿发布了新的文献求助10
3秒前
852应助woxiangbiye采纳,获得10
3秒前
飞羽完成签到,获得积分10
4秒前
Owen应助cherry采纳,获得10
4秒前
坚定的老六完成签到,获得积分10
4秒前
协和_子鱼完成签到,获得积分0
4秒前
5秒前
Hyde完成签到,获得积分10
6秒前
小南孩完成签到,获得积分10
6秒前
6秒前
7秒前
研友_VZG7GZ应助keyancui采纳,获得10
7秒前
康康完成签到 ,获得积分10
8秒前
英姑应助毕业就好采纳,获得10
8秒前
虚心的迎荷完成签到,获得积分10
8秒前
脑洞疼应助少侠不是菜鸟采纳,获得10
8秒前
8秒前
祝雲完成签到,获得积分10
8秒前
新的心跳发布了新的文献求助10
8秒前
壹拾柒完成签到,获得积分10
9秒前
9秒前
9秒前
mimi发布了新的文献求助10
9秒前
呆呆完成签到,获得积分10
10秒前
blebui应助姜茶采纳,获得10
10秒前
幼稚园小新完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672