Elucidating Mechanistic Origin of the Catalytic Activity of the Fe(111) Surface and Nanoclusters toward the Electrochemical Nitrogen Reduction Reaction

纳米团簇 联想代换 催化作用 化学 电化学 离解(化学) 密度泛函理论 氨生产 氧化还原 反应机理 解吸 氮气 选择性催化还原 吸附 无机化学 光化学 计算化学 物理化学 电极 有机化学
作者
Arunendu Das,Akhil S. Nair,Biswarup Pathak
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:124 (37): 20193-20202 被引量:17
标识
DOI:10.1021/acs.jpcc.0c05776
摘要

The design and development of highly efficient catalysts for the electrochemical reduction of nitrogen into NH3 at ambient temperature and pressure has been an area of major research interest. In this work, electrochemical N2 reduction following Heyrovsky-type associative and dissociative mechanisms is studied on the periodic Fe(111) surface using density functional theory calculations. Interestingly, the associative pathway has not been investigated on the Fe(111) surface in any of the previous studies though it is reported to be one of the best catalysts for ammonia synthesis. Therefore, we have investigated both the nitrogen reduction reaction (NRR) mechanisms on the Fe(111) surface. Free-energy analysis of associative and dissociative reaction pathways has been carried out, and it has been found that the associative mechanism is favorable over the dissociative mechanism with the formation of *NH2NH2 as a potential-determining step. Furthermore, the catalytic activity of cuboctahedral iron nanoclusters (NCs) is also investigated to understand the dimensional dependence of the Fe-based NRR activity. The NC shows a higher NRR activity by following an energetically more favorable ammonia desorption compared to the Fe(111) surface. The observed activity trends are explained from the site-specific interaction and binding energy of reaction intermediates. The surpassing of the high energy-demanding N2 dissociation step by both the catalytic systems implies that NRR can be facilitated in an energetically favorable manner via an electrochemical reduction pathway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ywang发布了新的文献求助10
刚刚
ZD小草完成签到 ,获得积分10
1秒前
健忘曼冬完成签到,获得积分10
2秒前
hkl1542发布了新的文献求助50
3秒前
4秒前
5秒前
KYN完成签到,获得积分10
6秒前
6秒前
桐桐应助叶未晞yi采纳,获得10
6秒前
6秒前
su发布了新的文献求助10
7秒前
123456789完成签到,获得积分10
9秒前
炙热的如柏完成签到,获得积分20
9秒前
10秒前
11秒前
HWei完成签到,获得积分10
11秒前
Ryan完成签到,获得积分10
11秒前
12秒前
Jzhang应助丙队长采纳,获得10
14秒前
15秒前
GXY发布了新的文献求助30
16秒前
Lucas应助专注秋尽采纳,获得10
16秒前
16秒前
754完成签到,获得积分10
16秒前
19秒前
学习猴发布了新的文献求助10
19秒前
充电宝应助炙热的如柏采纳,获得10
20秒前
所所应助qzaima采纳,获得10
20秒前
米兰达完成签到 ,获得积分0
21秒前
xg发布了新的文献求助10
23秒前
Loooong应助Ni采纳,获得10
24秒前
24秒前
WZ0904发布了新的文献求助10
24秒前
顾矜应助博ge采纳,获得10
26秒前
26秒前
Lotus发布了新的文献求助10
27秒前
28秒前
仁爱仙人掌完成签到,获得积分10
30秒前
ywang发布了新的文献求助10
30秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824