Roles of TGF-β Superfamily Proteins in Extravillous Trophoblast Invasion

胎盘形成 生物 滋养层 蜕膜 转化生长因子 怀孕 细胞生物学 胎盘 受体 超家族 胎儿 遗传学
作者
Yan Li,Junhao Yan,Hsun‐Ming Chang,Zi‐Jiang Chen,Peter C. K. Leung
出处
期刊:Trends in Endocrinology and Metabolism [Elsevier BV]
卷期号:32 (3): 170-189 被引量:64
标识
DOI:10.1016/j.tem.2020.12.005
摘要

Ongoing clinical and basic research efforts are deepening our understanding about how transforming growth factor-β (TGF-β) superfamily members modulate human extravillous trophoblast (EVT) invasion. A present lack of suitable in vivo research models, coupled to the frequent use of supraphysiological doses during in vitro and ex vivo functional studies, has limited informative interpretations about how diverse biomolecular networks regulate human EVT invasion. The development of advanced technologies, including high-throughput sequencing, 3D organoid cultures, and microfluidic assays, as well as studies focusing on additional tiers of biological regulation (e.g., epigenetic modifications), is collectively unveiling a deeper understanding of TGF-β superfamily function in human EVT invasion. Such basic insights are now enabling an era of drug-based interventions, including use of TGF-β signaling agonists and antagonists as well as therapeutic use of the TGF-β superfamily proteins themselves as protein drugs, for the diagnosis and treatment of pregnancy disorders related to disrupted EVT invasion. Following embryo implantation, extravillous trophoblasts (EVTs) invade the maternal decidua to a certain extent during early pregnancy, which is critical for normal placentation and successful pregnancy in humans. Although sharing a similar protein structure, the transforming growth factor-β (TGF-β) superfamily members exert divergent functions in regulating EVT invasion, which contributes to a relative balance of TGF-β superfamily proteins in precisely modulating this process at the maternal–fetal interface during the first trimester of pregnancy. This review details recent advances in our understanding of the functions of TGF-β superfamily members and their corresponding receptors, signaling pathways, and downstream molecular targets in regulating human EVT invasion from studies using various in vitro or ex vivo experimental models. Also, the relevance of these discoveries about TGF-β superfamily members to adverse pregnancy outcomes is summarized. The application of 3D culture trophoblast organoids, single-cell sequencing, and microfluidic assays in EVT invasion studies will help better reveal the molecular mechanisms through which TGF-β superfamily members regulate human EVT invasion, shedding light on the development of innovative strategies for predicting, diagnosing, treating, and preventing adverse human pregnancy outcomes related to EVT invasion dysfunction. Following embryo implantation, extravillous trophoblasts (EVTs) invade the maternal decidua to a certain extent during early pregnancy, which is critical for normal placentation and successful pregnancy in humans. Although sharing a similar protein structure, the transforming growth factor-β (TGF-β) superfamily members exert divergent functions in regulating EVT invasion, which contributes to a relative balance of TGF-β superfamily proteins in precisely modulating this process at the maternal–fetal interface during the first trimester of pregnancy. This review details recent advances in our understanding of the functions of TGF-β superfamily members and their corresponding receptors, signaling pathways, and downstream molecular targets in regulating human EVT invasion from studies using various in vitro or ex vivo experimental models. Also, the relevance of these discoveries about TGF-β superfamily members to adverse pregnancy outcomes is summarized. The application of 3D culture trophoblast organoids, single-cell sequencing, and microfluidic assays in EVT invasion studies will help better reveal the molecular mechanisms through which TGF-β superfamily members regulate human EVT invasion, shedding light on the development of innovative strategies for predicting, diagnosing, treating, and preventing adverse human pregnancy outcomes related to EVT invasion dysfunction. primary trophoblast cells/human trophoblast stem cells are collected and cultured in 3D, which are embedded within an extracellular matrix hydrogel matrix such as Matrigel. These ex vivo model systems developed in 2018 better mimic the physiological context of human biology than do cells grown on flat 2D surfaces. organs or small pieces of tissue that are removed and cultured in vitro in the laboratory. This ex vivo model requires a highly maintained environment in order to recreate original cellular conditions. a subset of trophoblasts that originated at the tip of the anchoring villi and have subsequently migrated beyond the confines of the villous trees. EVTs are essential for anchoring fetuses to maternal uteruses and for the remodeling of uterine spiral arteries. health problems that occur during or after pregnancy that can adversely influence maternal and/or fetal health, including miscarriage, pre-eclampsia, intrauterine growth restrictions, and gestational diabetes, among others. growth factors that share a similar protein structure with a cysteine knot and function in reproductive processes through their actions associated with cell migration, proliferation, apoptosis, differentiation, and tissue remodeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cheng发布了新的文献求助10
1秒前
1秒前
gui发布了新的文献求助10
1秒前
大头娃娃没下巴完成签到,获得积分10
1秒前
点点发布了新的文献求助30
1秒前
汤米发布了新的文献求助10
2秒前
2秒前
2秒前
zzzzzy完成签到,获得积分10
3秒前
xinxin完成签到,获得积分10
3秒前
科研通AI5应助77采纳,获得10
3秒前
汉堡包应助星若采纳,获得30
4秒前
苍狼BH发布了新的文献求助10
4秒前
jingyan完成签到,获得积分10
4秒前
4秒前
5秒前
烟花应助刘小花采纳,获得10
5秒前
思源应助贺静怡采纳,获得30
6秒前
Jayjay发布了新的文献求助10
6秒前
7秒前
7秒前
科研通AI5应助威海大雪采纳,获得10
7秒前
包容诗翠完成签到,获得积分10
7秒前
乔123发布了新的文献求助10
8秒前
北辰发布了新的文献求助10
8秒前
Peng发布了新的文献求助30
8秒前
10秒前
坚强馒头发布了新的文献求助10
10秒前
czh完成签到,获得积分10
10秒前
daisygogogo完成签到,获得积分10
11秒前
11秒前
11秒前
FashionBoy应助汤米采纳,获得10
11秒前
12秒前
14秒前
慕青应助reeled采纳,获得10
15秒前
16秒前
黑粉头头发布了新的文献求助10
16秒前
cheng发布了新的文献求助10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842319
求助须知:如何正确求助?哪些是违规求助? 3384417
关于积分的说明 10534630
捐赠科研通 3104925
什么是DOI,文献DOI怎么找? 1709841
邀请新用户注册赠送积分活动 823411
科研通“疑难数据库(出版商)”最低求助积分说明 774059