亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Roles of TGF-β Superfamily Proteins in Extravillous Trophoblast Invasion

胎盘形成 生物 滋养层 蜕膜 转化生长因子 怀孕 细胞生物学 胎盘 受体 超家族 胎儿 遗传学
作者
Yan Li,Junhao Yan,Hsun‐Ming Chang,Zi‐Jiang Chen,Peter C. K. Leung
出处
期刊:Trends in Endocrinology and Metabolism [Elsevier BV]
卷期号:32 (3): 170-189 被引量:68
标识
DOI:10.1016/j.tem.2020.12.005
摘要

Ongoing clinical and basic research efforts are deepening our understanding about how transforming growth factor-β (TGF-β) superfamily members modulate human extravillous trophoblast (EVT) invasion. A present lack of suitable in vivo research models, coupled to the frequent use of supraphysiological doses during in vitro and ex vivo functional studies, has limited informative interpretations about how diverse biomolecular networks regulate human EVT invasion. The development of advanced technologies, including high-throughput sequencing, 3D organoid cultures, and microfluidic assays, as well as studies focusing on additional tiers of biological regulation (e.g., epigenetic modifications), is collectively unveiling a deeper understanding of TGF-β superfamily function in human EVT invasion. Such basic insights are now enabling an era of drug-based interventions, including use of TGF-β signaling agonists and antagonists as well as therapeutic use of the TGF-β superfamily proteins themselves as protein drugs, for the diagnosis and treatment of pregnancy disorders related to disrupted EVT invasion. Following embryo implantation, extravillous trophoblasts (EVTs) invade the maternal decidua to a certain extent during early pregnancy, which is critical for normal placentation and successful pregnancy in humans. Although sharing a similar protein structure, the transforming growth factor-β (TGF-β) superfamily members exert divergent functions in regulating EVT invasion, which contributes to a relative balance of TGF-β superfamily proteins in precisely modulating this process at the maternal–fetal interface during the first trimester of pregnancy. This review details recent advances in our understanding of the functions of TGF-β superfamily members and their corresponding receptors, signaling pathways, and downstream molecular targets in regulating human EVT invasion from studies using various in vitro or ex vivo experimental models. Also, the relevance of these discoveries about TGF-β superfamily members to adverse pregnancy outcomes is summarized. The application of 3D culture trophoblast organoids, single-cell sequencing, and microfluidic assays in EVT invasion studies will help better reveal the molecular mechanisms through which TGF-β superfamily members regulate human EVT invasion, shedding light on the development of innovative strategies for predicting, diagnosing, treating, and preventing adverse human pregnancy outcomes related to EVT invasion dysfunction. Following embryo implantation, extravillous trophoblasts (EVTs) invade the maternal decidua to a certain extent during early pregnancy, which is critical for normal placentation and successful pregnancy in humans. Although sharing a similar protein structure, the transforming growth factor-β (TGF-β) superfamily members exert divergent functions in regulating EVT invasion, which contributes to a relative balance of TGF-β superfamily proteins in precisely modulating this process at the maternal–fetal interface during the first trimester of pregnancy. This review details recent advances in our understanding of the functions of TGF-β superfamily members and their corresponding receptors, signaling pathways, and downstream molecular targets in regulating human EVT invasion from studies using various in vitro or ex vivo experimental models. Also, the relevance of these discoveries about TGF-β superfamily members to adverse pregnancy outcomes is summarized. The application of 3D culture trophoblast organoids, single-cell sequencing, and microfluidic assays in EVT invasion studies will help better reveal the molecular mechanisms through which TGF-β superfamily members regulate human EVT invasion, shedding light on the development of innovative strategies for predicting, diagnosing, treating, and preventing adverse human pregnancy outcomes related to EVT invasion dysfunction. primary trophoblast cells/human trophoblast stem cells are collected and cultured in 3D, which are embedded within an extracellular matrix hydrogel matrix such as Matrigel. These ex vivo model systems developed in 2018 better mimic the physiological context of human biology than do cells grown on flat 2D surfaces. organs or small pieces of tissue that are removed and cultured in vitro in the laboratory. This ex vivo model requires a highly maintained environment in order to recreate original cellular conditions. a subset of trophoblasts that originated at the tip of the anchoring villi and have subsequently migrated beyond the confines of the villous trees. EVTs are essential for anchoring fetuses to maternal uteruses and for the remodeling of uterine spiral arteries. health problems that occur during or after pregnancy that can adversely influence maternal and/or fetal health, including miscarriage, pre-eclampsia, intrauterine growth restrictions, and gestational diabetes, among others. growth factors that share a similar protein structure with a cysteine knot and function in reproductive processes through their actions associated with cell migration, proliferation, apoptosis, differentiation, and tissue remodeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小井盖完成签到 ,获得积分10
3秒前
4秒前
眉姐姐的藕粉桂花糖糕完成签到 ,获得积分10
5秒前
坚强觅珍完成签到 ,获得积分10
6秒前
8秒前
8秒前
英俊的铭应助东郭思烟采纳,获得10
9秒前
盯盯盯发布了新的文献求助10
11秒前
11秒前
14秒前
SciGPT应助科研小菜鸡采纳,获得10
14秒前
春夏发布了新的文献求助10
17秒前
bkagyin应助曾泰平采纳,获得10
21秒前
敬业乐群完成签到,获得积分10
21秒前
天天快乐应助东郭思烟采纳,获得10
22秒前
顾矜应助公西傲蕾采纳,获得10
23秒前
哆啦的空间站完成签到,获得积分0
25秒前
春夏完成签到,获得积分10
29秒前
30秒前
30秒前
菜根谭完成签到 ,获得积分10
32秒前
曾泰平发布了新的文献求助10
34秒前
leaf发布了新的文献求助10
36秒前
搞科研的小李同学完成签到 ,获得积分10
41秒前
52秒前
54秒前
57秒前
58秒前
59秒前
LBJBowen23发布了新的文献求助10
1分钟前
1分钟前
1分钟前
公西傲蕾发布了新的文献求助10
1分钟前
LBJBowen23完成签到,获得积分10
1分钟前
Jasper应助天使她男人采纳,获得10
1分钟前
李健的粉丝团团长应助leaf采纳,获得10
1分钟前
Li发布了新的文献求助10
1分钟前
1分钟前
1分钟前
leaf完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4994555
求助须知:如何正确求助?哪些是违规求助? 4242059
关于积分的说明 13215537
捐赠科研通 4037680
什么是DOI,文献DOI怎么找? 2209221
邀请新用户注册赠送积分活动 1220038
关于科研通互助平台的介绍 1138659