Roles of TGF-β Superfamily Proteins in Extravillous Trophoblast Invasion

胎盘形成 生物 滋养层 蜕膜 转化生长因子 怀孕 细胞生物学 胎盘 受体 超家族 胎儿 遗传学
作者
Yan Li,Junhao Yan,Hsun‐Ming Chang,Zi‐Jiang Chen,Peter C. K. Leung
出处
期刊:Trends in Endocrinology and Metabolism [Elsevier]
卷期号:32 (3): 170-189 被引量:68
标识
DOI:10.1016/j.tem.2020.12.005
摘要

Ongoing clinical and basic research efforts are deepening our understanding about how transforming growth factor-β (TGF-β) superfamily members modulate human extravillous trophoblast (EVT) invasion. A present lack of suitable in vivo research models, coupled to the frequent use of supraphysiological doses during in vitro and ex vivo functional studies, has limited informative interpretations about how diverse biomolecular networks regulate human EVT invasion. The development of advanced technologies, including high-throughput sequencing, 3D organoid cultures, and microfluidic assays, as well as studies focusing on additional tiers of biological regulation (e.g., epigenetic modifications), is collectively unveiling a deeper understanding of TGF-β superfamily function in human EVT invasion. Such basic insights are now enabling an era of drug-based interventions, including use of TGF-β signaling agonists and antagonists as well as therapeutic use of the TGF-β superfamily proteins themselves as protein drugs, for the diagnosis and treatment of pregnancy disorders related to disrupted EVT invasion. Following embryo implantation, extravillous trophoblasts (EVTs) invade the maternal decidua to a certain extent during early pregnancy, which is critical for normal placentation and successful pregnancy in humans. Although sharing a similar protein structure, the transforming growth factor-β (TGF-β) superfamily members exert divergent functions in regulating EVT invasion, which contributes to a relative balance of TGF-β superfamily proteins in precisely modulating this process at the maternal–fetal interface during the first trimester of pregnancy. This review details recent advances in our understanding of the functions of TGF-β superfamily members and their corresponding receptors, signaling pathways, and downstream molecular targets in regulating human EVT invasion from studies using various in vitro or ex vivo experimental models. Also, the relevance of these discoveries about TGF-β superfamily members to adverse pregnancy outcomes is summarized. The application of 3D culture trophoblast organoids, single-cell sequencing, and microfluidic assays in EVT invasion studies will help better reveal the molecular mechanisms through which TGF-β superfamily members regulate human EVT invasion, shedding light on the development of innovative strategies for predicting, diagnosing, treating, and preventing adverse human pregnancy outcomes related to EVT invasion dysfunction. Following embryo implantation, extravillous trophoblasts (EVTs) invade the maternal decidua to a certain extent during early pregnancy, which is critical for normal placentation and successful pregnancy in humans. Although sharing a similar protein structure, the transforming growth factor-β (TGF-β) superfamily members exert divergent functions in regulating EVT invasion, which contributes to a relative balance of TGF-β superfamily proteins in precisely modulating this process at the maternal–fetal interface during the first trimester of pregnancy. This review details recent advances in our understanding of the functions of TGF-β superfamily members and their corresponding receptors, signaling pathways, and downstream molecular targets in regulating human EVT invasion from studies using various in vitro or ex vivo experimental models. Also, the relevance of these discoveries about TGF-β superfamily members to adverse pregnancy outcomes is summarized. The application of 3D culture trophoblast organoids, single-cell sequencing, and microfluidic assays in EVT invasion studies will help better reveal the molecular mechanisms through which TGF-β superfamily members regulate human EVT invasion, shedding light on the development of innovative strategies for predicting, diagnosing, treating, and preventing adverse human pregnancy outcomes related to EVT invasion dysfunction. primary trophoblast cells/human trophoblast stem cells are collected and cultured in 3D, which are embedded within an extracellular matrix hydrogel matrix such as Matrigel. These ex vivo model systems developed in 2018 better mimic the physiological context of human biology than do cells grown on flat 2D surfaces. organs or small pieces of tissue that are removed and cultured in vitro in the laboratory. This ex vivo model requires a highly maintained environment in order to recreate original cellular conditions. a subset of trophoblasts that originated at the tip of the anchoring villi and have subsequently migrated beyond the confines of the villous trees. EVTs are essential for anchoring fetuses to maternal uteruses and for the remodeling of uterine spiral arteries. health problems that occur during or after pregnancy that can adversely influence maternal and/or fetal health, including miscarriage, pre-eclampsia, intrauterine growth restrictions, and gestational diabetes, among others. growth factors that share a similar protein structure with a cysteine knot and function in reproductive processes through their actions associated with cell migration, proliferation, apoptosis, differentiation, and tissue remodeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大气的氧发布了新的文献求助10
1秒前
1秒前
djh完成签到,获得积分0
1秒前
英姑应助Lazyneko采纳,获得10
1秒前
苗条的善斓完成签到,获得积分10
1秒前
贪玩的跳跳糖完成签到,获得积分10
1秒前
爱撒娇的妙竹完成签到,获得积分10
3秒前
guanoo完成签到,获得积分10
3秒前
求是完成签到,获得积分20
3秒前
gyhmm完成签到,获得积分10
3秒前
刘勇完成签到,获得积分10
4秒前
4秒前
宝藏发布了新的文献求助10
4秒前
4秒前
落泺完成签到 ,获得积分10
4秒前
YBHTLLLL完成签到,获得积分10
5秒前
大个应助AN采纳,获得10
5秒前
槑槑发布了新的文献求助10
5秒前
5秒前
英俊的铭应助fairy采纳,获得30
5秒前
5秒前
zzrg发布了新的文献求助10
5秒前
Continue完成签到,获得积分10
5秒前
白踏歌发布了新的文献求助10
6秒前
殷晓阳发布了新的文献求助10
6秒前
6秒前
Owen应助静素雅格采纳,获得10
6秒前
6秒前
7秒前
7秒前
爆米花应助Edgar采纳,获得10
7秒前
7秒前
古猫宁发布了新的文献求助10
8秒前
8秒前
LovelyYy完成签到,获得积分10
8秒前
8秒前
初晴发布了新的文献求助10
8秒前
大帅发布了新的文献求助50
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525920
求助须知:如何正确求助?哪些是违规求助? 4616027
关于积分的说明 14551672
捐赠科研通 4554261
什么是DOI,文献DOI怎么找? 2495729
邀请新用户注册赠送积分活动 1476208
关于科研通互助平台的介绍 1447848