亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MK-FSVM-SVDD: A Multiple Kernel-based Fuzzy SVM Model for Predicting DNA-binding Proteins via Support Vector Data Description

支持向量机 人工智能 计算机科学 分类器(UML) 水准点(测量) 模式识别(心理学) 模糊逻辑 机器学习 数据挖掘 核(代数) 数学 地理 大地测量学 组合数学
作者
Yi Zou,Hongjie Wu,Xiaoyi Guo,Peng Li,Yijie Ding,Jijun Tang,Fei Guo
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:16 (2): 274-283 被引量:56
标识
DOI:10.2174/1574893615999200607173829
摘要

Background: Detecting DNA-binding proteins (DBPs) based on biological and chemical methods is time-consuming and expensive. Objective: In recent years, the rise of computational biology methods based on Machine Learning (ML) has greatly improved the detection efficiency of DBPs. Method: In this study, the Multiple Kernel-based Fuzzy SVM Model with Support Vector Data Description (MK-FSVM-SVDD) is proposed to predict DBPs. Firstly, sex features are extracted from the protein sequence. Secondly, multiple kernels are constructed via these sequence features. Then, multiple kernels are integrated by Centered Kernel Alignment-based Multiple Kernel Learning (CKA-MKL). Next, fuzzy membership scores of training samples are calculated with Support Vector Data Description (SVDD). FSVM is trained and employed to detect new DBPs. Results: Our model is evaluated on several benchmark datasets. Compared with other methods, MKFSVM- SVDD achieves best Matthew's Correlation Coefficient (MCC) on PDB186 (0.7250) and PDB2272 (0.5476). Conclusion: We can conclude that MK-FSVM-SVDD is more suitable than common SVM, as the classifier for DNA-binding proteins identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
pengpengyin发布了新的文献求助10
20秒前
咔敏完成签到,获得积分10
28秒前
咔敏发布了新的文献求助10
32秒前
pengpengyin完成签到,获得积分10
39秒前
1分钟前
小二郎应助七安得安采纳,获得30
1分钟前
平常囧完成签到,获得积分10
1分钟前
李健应助跳跃的小之采纳,获得10
1分钟前
1分钟前
2分钟前
火速阿百川完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
奶油蜜豆卷完成签到,获得积分10
2分钟前
浮曳完成签到,获得积分10
2分钟前
iShine完成签到 ,获得积分10
2分钟前
顺心蜜粉发布了新的文献求助10
3分钟前
3分钟前
寻道图强应助顺心蜜粉采纳,获得100
3分钟前
七安得安发布了新的文献求助30
3分钟前
上官若男应助七安得安采纳,获得10
4分钟前
大胆砖头完成签到 ,获得积分10
4分钟前
4分钟前
七安得安发布了新的文献求助10
4分钟前
七安得安完成签到,获得积分10
4分钟前
手可摘星陈同学完成签到 ,获得积分10
5分钟前
5分钟前
黄油小熊完成签到 ,获得积分10
5分钟前
Luke发布了新的文献求助10
5分钟前
盼盼完成签到 ,获得积分10
5分钟前
科研辣鸡发布了新的文献求助10
6分钟前
6分钟前
7分钟前
知悉发布了新的文献求助10
7分钟前
知悉完成签到,获得积分10
7分钟前
samchen完成签到,获得积分10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
科研通AI2S应助btb采纳,获得30
8分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644822
求助须知:如何正确求助?哪些是违规求助? 4765845
关于积分的说明 15025703
捐赠科研通 4803160
什么是DOI,文献DOI怎么找? 2568064
邀请新用户注册赠送积分活动 1525521
关于科研通互助平台的介绍 1485064