MK-FSVM-SVDD: A Multiple Kernel-based Fuzzy SVM Model for Predicting DNA-binding Proteins via Support Vector Data Description

支持向量机 人工智能 计算机科学 分类器(UML) 水准点(测量) 模式识别(心理学) 模糊逻辑 机器学习 数据挖掘 核(代数) 数学 地理 大地测量学 组合数学
作者
Yi Zou,Hongjie Wu,Xiaoyi Guo,Peng Li,Yijie Ding,Jijun Tang,Fei Guo
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:16 (2): 274-283 被引量:56
标识
DOI:10.2174/1574893615999200607173829
摘要

Background: Detecting DNA-binding proteins (DBPs) based on biological and chemical methods is time-consuming and expensive. Objective: In recent years, the rise of computational biology methods based on Machine Learning (ML) has greatly improved the detection efficiency of DBPs. Method: In this study, the Multiple Kernel-based Fuzzy SVM Model with Support Vector Data Description (MK-FSVM-SVDD) is proposed to predict DBPs. Firstly, sex features are extracted from the protein sequence. Secondly, multiple kernels are constructed via these sequence features. Then, multiple kernels are integrated by Centered Kernel Alignment-based Multiple Kernel Learning (CKA-MKL). Next, fuzzy membership scores of training samples are calculated with Support Vector Data Description (SVDD). FSVM is trained and employed to detect new DBPs. Results: Our model is evaluated on several benchmark datasets. Compared with other methods, MKFSVM- SVDD achieves best Matthew's Correlation Coefficient (MCC) on PDB186 (0.7250) and PDB2272 (0.5476). Conclusion: We can conclude that MK-FSVM-SVDD is more suitable than common SVM, as the classifier for DNA-binding proteins identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助科研通管家采纳,获得10
刚刚
spc68应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
危机的阁应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
刚刚
研友_Z60ObL完成签到,获得积分10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
mm应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
1秒前
英姑应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
Singularity应助科研通管家采纳,获得10
1秒前
Adc应助科研通管家采纳,获得10
1秒前
1秒前
勤学勤积累完成签到,获得积分10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
2339822272完成签到,获得积分10
1秒前
2秒前
jdndbd完成签到,获得积分10
2秒前
失眠的香菇完成签到 ,获得积分10
2秒前
2秒前
yangqi完成签到,获得积分10
3秒前
Zll发布了新的文献求助10
3秒前
3秒前
我爱科研完成签到,获得积分10
3秒前
kelly9110发布了新的文献求助10
3秒前
4秒前
GingerF应助sxx采纳,获得60
5秒前
5秒前
完美的香芦完成签到,获得积分10
5秒前
6秒前
隐形曼青应助cya采纳,获得10
6秒前
wanci应助滴答采纳,获得10
6秒前
ppp关闭了ppp文献求助
7秒前
闫永洁完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425