MK-FSVM-SVDD: A Multiple Kernel-based Fuzzy SVM Model for Predicting DNA-binding Proteins via Support Vector Data Description

支持向量机 人工智能 计算机科学 分类器(UML) 水准点(测量) 模式识别(心理学) 模糊逻辑 机器学习 数据挖掘 核(代数) 数学 地理 大地测量学 组合数学
作者
Yi Zou,Hongjie Wu,Xiaoyi Guo,Peng Li,Yijie Ding,Jijun Tang,Fei Guo
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:16 (2): 274-283 被引量:56
标识
DOI:10.2174/1574893615999200607173829
摘要

Background: Detecting DNA-binding proteins (DBPs) based on biological and chemical methods is time-consuming and expensive. Objective: In recent years, the rise of computational biology methods based on Machine Learning (ML) has greatly improved the detection efficiency of DBPs. Method: In this study, the Multiple Kernel-based Fuzzy SVM Model with Support Vector Data Description (MK-FSVM-SVDD) is proposed to predict DBPs. Firstly, sex features are extracted from the protein sequence. Secondly, multiple kernels are constructed via these sequence features. Then, multiple kernels are integrated by Centered Kernel Alignment-based Multiple Kernel Learning (CKA-MKL). Next, fuzzy membership scores of training samples are calculated with Support Vector Data Description (SVDD). FSVM is trained and employed to detect new DBPs. Results: Our model is evaluated on several benchmark datasets. Compared with other methods, MKFSVM- SVDD achieves best Matthew's Correlation Coefficient (MCC) on PDB186 (0.7250) and PDB2272 (0.5476). Conclusion: We can conclude that MK-FSVM-SVDD is more suitable than common SVM, as the classifier for DNA-binding proteins identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞天小女警完成签到,获得积分10
刚刚
红红完成签到,获得积分10
刚刚
素和姣姣完成签到,获得积分10
1秒前
灰鸽舞完成签到 ,获得积分10
1秒前
逆袭者完成签到,获得积分10
1秒前
ash应助airvince采纳,获得50
1秒前
1秒前
恶毒的婆婆完成签到,获得积分10
2秒前
iceeer完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
spencer177完成签到,获得积分10
4秒前
4秒前
关心发布了新的文献求助10
4秒前
5秒前
minkeyantong完成签到 ,获得积分10
5秒前
gyq发布了新的文献求助10
5秒前
藜誌完成签到,获得积分10
5秒前
BDH完成签到,获得积分10
5秒前
进击的PhD给未来EBM的求助进行了留言
5秒前
5秒前
酒巷完成签到,获得积分10
6秒前
6秒前
Richardxuuu发布了新的文献求助10
6秒前
我就是我完成签到,获得积分10
6秒前
魔芋不爽完成签到 ,获得积分10
7秒前
赵Zhao完成签到,获得积分10
7秒前
wenjian完成签到,获得积分10
7秒前
Linzi完成签到,获得积分10
8秒前
chen完成签到,获得积分10
8秒前
小陈完成签到,获得积分10
8秒前
明钟达完成签到,获得积分10
9秒前
9秒前
N维完成签到,获得积分10
9秒前
9秒前
allover完成签到,获得积分10
10秒前
海绵宝宝发布了新的文献求助10
10秒前
jim完成签到 ,获得积分10
10秒前
爆杀小白鼠完成签到,获得积分10
10秒前
yangsi完成签到 ,获得积分10
10秒前
weijiechi完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645277
求助须知:如何正确求助?哪些是违规求助? 4768340
关于积分的说明 15027650
捐赠科研通 4803859
什么是DOI,文献DOI怎么找? 2568523
邀请新用户注册赠送积分活动 1525813
关于科研通互助平台的介绍 1485484