Quantifying Feature Importance for Detecting Depression using Random Forest

随机森林 计算机科学 加权 特征选择 机器学习 人工智能 分类器(UML) 特征(语言学) 决策树 数据挖掘 模式识别(心理学) 语言学 医学 放射科 哲学
作者
Hatoon S. AlSagri,Mourad Ykhlef
出处
期刊:International Journal of Advanced Computer Science and Applications [Science and Information Organization]
卷期号:11 (5) 被引量:11
标识
DOI:10.14569/ijacsa.2020.0110577
摘要

Feature selection based on importance is a funda-mental step in machine learning models because it serves as a vital technique to orient the use of variables to what is most efficient and effective for a given machine learning model. In this study, an explainable machine learning model based on Random forest, is built to address the problem of identification of depression level for Twitter users. This model reflects its transparency through calculating its feature importance. There are several techniques to quantify the importance of features. However, in this study, random forest is used as both a classifier, which has over-performing aspects over many classifiers such as decision trees, and a method for weighting the input features as their importance imply. In this study, the importance of features is measured using different techniques including random forest, and the results of these techniques are compared. Furthermore, feature importance uses the concept of weighting the input variables inside a complete system for recommending a solution for depressed persons. The experimental results confirm the superiority of random forest over other classifiers using three different methods for measuring the features importance. The accuracy of random forest classification reached 84.7%, and the importance of features increased the classifier accuracy to 84.9%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
23完成签到,获得积分10
刚刚
刚刚
快乐滑板应助无奈冥采纳,获得10
1秒前
刘慧鑫发布了新的文献求助10
1秒前
zhou_AGCT发布了新的文献求助10
1秒前
big龙发布了新的文献求助20
1秒前
Zhang完成签到,获得积分10
2秒前
2秒前
黑炭球发布了新的文献求助30
2秒前
Jiang 小白完成签到,获得积分10
2秒前
科研狗发布了新的文献求助10
3秒前
3秒前
Yuan88发布了新的文献求助30
3秒前
4秒前
guanshujuan发布了新的文献求助10
5秒前
欣喜的伟泽完成签到,获得积分10
5秒前
5秒前
很牛的ID完成签到,获得积分20
6秒前
6秒前
无限的隶完成签到,获得积分10
6秒前
academician完成签到,获得积分10
6秒前
6秒前
7秒前
CMUSK发布了新的文献求助10
7秒前
小陆发布了新的文献求助10
8秒前
疯癫科研人完成签到,获得积分10
8秒前
9秒前
9秒前
喵先生发布了新的文献求助80
9秒前
爆米花应助lseonf采纳,获得10
9秒前
day_on发布了新的文献求助10
9秒前
adfadf完成签到,获得积分20
10秒前
10秒前
11秒前
依恋发布了新的文献求助10
11秒前
纯情的吴发布了新的文献求助30
12秒前
万能图书馆应助阿关采纳,获得10
12秒前
UY完成签到 ,获得积分20
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951344
求助须知:如何正确求助?哪些是违规求助? 3496706
关于积分的说明 11083953
捐赠科研通 3227150
什么是DOI,文献DOI怎么找? 1784304
邀请新用户注册赠送积分活动 868345
科研通“疑难数据库(出版商)”最低求助积分说明 801102