Dysregulation of pseudogene/lncRNA-hsa-miR-363-3p-SPOCK2 pathway fuels stage progression of ovarian cancer.

竞争性内源性RNA 阶段(地层学) 长非编码RNA 信使核糖核酸 基因表达 临床意义 内科学 基因敲除
作者
Weiyang Lou,Bisha Ding,Guansheng Zhong,Chengyong Du,Weimin Fan,Peifen Fu
出处
期刊:Aging [Impact Journals, LLC]
卷期号:11 (23): 11416-11439 被引量:24
标识
DOI:10.18632/aging.102538
摘要

Objective: Ovarian cancer is one of the most common and lethal cancer types in women. The molecular mechanism of ovarian cancer progression is still unclear. Results: Here, we first reported that expression levels of three genes, GJB2, S100A2 and SPOCK2, were significantly higher in advanced stage than that in early stage of ovarian cancer, and upregulation of them indicated poor prognosis of patients with ovarian cancer. Subsequently, 8, 6 and 20 miRNAs were predicted to target GJB2, S100A2 and SPOCK2, respectively. Among these miRNA-mRNA pairs, hsa-miR-363-3p-SPOCK2 axis was the most potential in suppressing progression of ovarian cancer. Mechanistically, we found that hsa-miR-363-3p-SPOCK2 axis was involved in regulation of actin cytoskeleton. Moreover, 6 pseudogenes and 8 lncRNAs were identified to potentially inhibit hsa-miR-363-3p-SPOCK2 axis in ovarian cancer. Conclusions: Collectively, we elucidate a regulatory role of pseudogene/lncRNA-hsa-miR-363-3p-SPOCK2 pathway in progression of ovarian cancer, which may provide effective therapeutic approaches and promising prognostic biomarkers for ovarian cancer. Materials and methods: Differentially expressed genes (DEGs) in ovarian cancer were first screened using {type:entrez-geo,attrs:{text:GSE12470,term_id:12470}}GSE12470, after which DEGs expression were validated using GEPIA. Kaplan-Meier analysis was employed to assess the prognostic values. Potential miRNAs were predicted by seven target prediction databases, and upstream lncRNAs and pseudogenes of hsa-miR-363-3p were forecasted through miRNet or starBase. UALCAN and starBase were used to obtain the co-expressed genes of SPOCK. Enrichment analysis for these co-expressed genes was performed by Enrichr.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辣比小欣发布了新的文献求助10
刚刚
1秒前
1秒前
自由的碧蓉完成签到,获得积分10
1秒前
乐乐应助科研进化中采纳,获得30
2秒前
2秒前
跟我说晚安完成签到,获得积分20
2秒前
科研通AI5应助饱满的海秋采纳,获得10
3秒前
李爱国应助腼腆的馒头采纳,获得10
3秒前
积极的黑猫应助hmxh采纳,获得20
3秒前
秋子发布了新的文献求助10
3秒前
youyoumami发布了新的文献求助10
4秒前
Guo发布了新的文献求助10
4秒前
5秒前
5秒前
CipherSage应助小鹿5460采纳,获得10
5秒前
情怀应助另一种感觉采纳,获得10
5秒前
简单平蓝发布了新的文献求助10
6秒前
复杂含灵发布了新的文献求助10
6秒前
bkagyin应助panda采纳,获得10
6秒前
7秒前
小猫来啦完成签到,获得积分10
7秒前
自由笙应助敬老院N号采纳,获得10
7秒前
7秒前
chengzi完成签到,获得积分10
7秒前
8秒前
qin希望应助科研通管家采纳,获得10
9秒前
小二郎应助YMAO采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
IceyCNZ应助科研通管家采纳,获得10
9秒前
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
jianglin6完成签到,获得积分20
9秒前
苏卿应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
科研进化中完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564154
求助须知:如何正确求助?哪些是违规求助? 3137367
关于积分的说明 9422052
捐赠科研通 2837751
什么是DOI,文献DOI怎么找? 1560082
邀请新用户注册赠送积分活动 729261
科研通“疑难数据库(出版商)”最低求助积分说明 717280