Interfacial Photoelectrochemical Catalysis: Solar‐Induced Green Synthesis of Organic Molecules

催化作用 分子 有机分子 太阳能转换 化学 光电化学电池 材料科学 有机太阳能电池 光电化学 纳米技术 化学工程 光化学 太阳能 电化学 有机化学 电极 物理化学 聚合物 工程类 生物 电解质 生态学
作者
Tomas Hardwick,Ahsanulhaq Qurashi,Bahareh Shirinfar,Nisar Ahmed
出处
期刊:Chemsuschem [Wiley]
卷期号:13 (8): 1967-1973 被引量:40
标识
DOI:10.1002/cssc.202000032
摘要

Many oxidation and reduction reactions in conventional organic synthesis rely on harsh conditions, toxic or corrosive substances, and environmentally damaging chemicals. In addition, competing reactions may take place, some of which produce hazardous waste products and, therefore, reaction selectivity suffers. To overcome such synthetic drawbacks, an enormous effort is being devoted to find alternative processes that operate much more efficiently, requiring milder conditions to contribute to a greener economy and provide urgently needed new pathways with enhanced selectivity. Fortunately, there is a strategy that has attracted global interest from multiple disciplines that involves the use of sunlight to perform artificial photosynthesis, in which a photoelectrochemical cell splits water into hydrogen fuel, reduces CO2 into "solar" fuels, and more recently, convert organic chemicals into higher value products. Recently, photoanode and photocathode materials have emerged as useful tools to perform organic oxidations and reductions for the synthesis of important molecules, other than just hydrogen or oxygen. Whereas many studies have focused on the degradation of unwanted and dangerous chemicals, solar-induced organic transformations have attracted much less attention. This Minireview summarizes some of latest research efforts in using photoelectrochemical cells to facilitate organic oxidation and reduction reactions to avoid valuable substances while avoiding toxic reagents and expensive precious metal catalysts. Future developments that will enable such technologies to broaden their scope are also considered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmddlj完成签到 ,获得积分10
刚刚
1秒前
zzh应助wcuzhl采纳,获得10
1秒前
花花完成签到,获得积分10
1秒前
留白守墨发布了新的文献求助10
2秒前
you发布了新的文献求助10
3秒前
在水一方应助日月星陈采纳,获得10
3秒前
3秒前
orixero应助Anemone采纳,获得10
4秒前
木子发布了新的文献求助10
4秒前
ata完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
7秒前
顾矜应助yin采纳,获得10
7秒前
7秒前
超级绫发布了新的文献求助10
7秒前
85搏一博应助欣欣采纳,获得10
8秒前
8秒前
Hello应助认真灯泡采纳,获得10
9秒前
11秒前
亓大大发布了新的文献求助10
12秒前
丘比特应助温暖寻雪采纳,获得10
12秒前
12秒前
东尧完成签到 ,获得积分10
13秒前
郭mm发布了新的文献求助10
13秒前
留白守墨完成签到,获得积分20
13秒前
pangpang应助barrycream采纳,获得10
13秒前
ding应助胡萝卜须采纳,获得30
14秒前
昌子骞完成签到,获得积分10
15秒前
15秒前
所所应助无情的黑猫采纳,获得10
16秒前
sschen完成签到,获得积分10
16秒前
LT完成签到,获得积分10
18秒前
YYY完成签到,获得积分10
18秒前
19秒前
19秒前
向光关注了科研通微信公众号
19秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312412
求助须知:如何正确求助?哪些是违规求助? 2945030
关于积分的说明 8522726
捐赠科研通 2620818
什么是DOI,文献DOI怎么找? 1433096
科研通“疑难数据库(出版商)”最低求助积分说明 664837
邀请新用户注册赠送积分活动 650217