Imaging research in fibrotic lung disease; applying deep learning to unsolved problems

医学 人工智能 计算机科学 内科学
作者
Simon Walsh,Stephen M. Humphries,Athol U. Wells,Kevin K. Brown
出处
期刊:The Lancet Respiratory Medicine [Elsevier]
卷期号:8 (11): 1144-1153 被引量:61
标识
DOI:10.1016/s2213-2600(20)30003-5
摘要

Over the past decade, there has been a groundswell of research interest in computer-based methods for objectively quantifying fibrotic lung disease on high resolution CT of the chest. In the past 5 years, the arrival of deep learning-based image analysis has created exciting new opportunities for enhancing the understanding of, and the ability to interpret, fibrotic lung disease on CT. Specific unsolved problems for which computer-based imaging analysis might provide solutions include the development of reliable methods for assisting with diagnosis, detecting early disease, and predicting disease behaviour using baseline imaging data. However, to harness this technology, technical and societal challenges must be overcome. Large CT datasets will be needed to power the training of deep learning algorithms. Open science research and collaboration between academia and industry must be encouraged. Prospective clinical utility studies will be needed to test computer algorithm performance in real-world clinical settings and demonstrate patient benefit over current best practice. Finally, ethical standards, which ensure patient confidentiality and mitigate against biases in training datasets, that can be encoded in machine-learning systems will be needed as well as bespoke data governance and accountability frameworks to encourage buy-in from health-care professionals, patients, and the public.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
001026Z完成签到,获得积分10
3秒前
青阳完成签到,获得积分10
4秒前
luxlili完成签到,获得积分10
5秒前
科研通AI2S应助山止川行采纳,获得10
5秒前
科研通AI2S应助山止川行采纳,获得10
5秒前
所所应助雷小牛采纳,获得10
6秒前
6秒前
ccc发布了新的文献求助10
7秒前
evilhag完成签到,获得积分10
10秒前
xfq0829完成签到 ,获得积分10
10秒前
青菜完成签到,获得积分20
11秒前
tiantian8715发布了新的文献求助10
11秒前
鲁老九发布了新的文献求助10
12秒前
tzy完成签到,获得积分10
13秒前
整齐的蜻蜓完成签到 ,获得积分10
13秒前
15秒前
15秒前
oceanao应助fdw采纳,获得10
16秒前
英俊的铭应助hebhm采纳,获得10
18秒前
18秒前
19秒前
yyhatb完成签到,获得积分10
19秒前
ding应助简单如容采纳,获得10
21秒前
22秒前
斗南红缨发布了新的文献求助10
22秒前
yangweijing完成签到 ,获得积分10
23秒前
小凯应助三两白菜采纳,获得10
25秒前
volcanor完成签到,获得积分10
25秒前
ccc发布了新的文献求助10
27秒前
yh完成签到,获得积分10
29秒前
小蘑菇应助简单如容采纳,获得10
30秒前
隐形曼青应助volcanor采纳,获得10
30秒前
CipherSage应助yuwq采纳,获得30
32秒前
32秒前
34秒前
连牙蓝上了吗完成签到 ,获得积分10
35秒前
Rico完成签到,获得积分10
36秒前
luwenbin完成签到,获得积分10
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163348
求助须知:如何正确求助?哪些是违规求助? 2814206
关于积分的说明 7903775
捐赠科研通 2473774
什么是DOI,文献DOI怎么找? 1317050
科研通“疑难数据库(出版商)”最低求助积分说明 631614
版权声明 602187