Imaging research in fibrotic lung disease; applying deep learning to unsolved problems

医学 人工智能 计算机科学 内科学
作者
Simon Walsh,Stephen M. Humphries,Athol U. Wells,Kevin K. Brown
出处
期刊:The Lancet Respiratory Medicine [Elsevier BV]
卷期号:8 (11): 1144-1153 被引量:64
标识
DOI:10.1016/s2213-2600(20)30003-5
摘要

Over the past decade, there has been a groundswell of research interest in computer-based methods for objectively quantifying fibrotic lung disease on high resolution CT of the chest. In the past 5 years, the arrival of deep learning-based image analysis has created exciting new opportunities for enhancing the understanding of, and the ability to interpret, fibrotic lung disease on CT. Specific unsolved problems for which computer-based imaging analysis might provide solutions include the development of reliable methods for assisting with diagnosis, detecting early disease, and predicting disease behaviour using baseline imaging data. However, to harness this technology, technical and societal challenges must be overcome. Large CT datasets will be needed to power the training of deep learning algorithms. Open science research and collaboration between academia and industry must be encouraged. Prospective clinical utility studies will be needed to test computer algorithm performance in real-world clinical settings and demonstrate patient benefit over current best practice. Finally, ethical standards, which ensure patient confidentiality and mitigate against biases in training datasets, that can be encoded in machine-learning systems will be needed as well as bespoke data governance and accountability frameworks to encourage buy-in from health-care professionals, patients, and the public.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
meire完成签到 ,获得积分20
2秒前
123Y发布了新的文献求助10
3秒前
坚定的泥猴桃完成签到 ,获得积分10
3秒前
MJCurly关注了科研通微信公众号
3秒前
Ava应助Jonathan采纳,获得10
3秒前
Lucas应助迷你的颖采纳,获得10
4秒前
语雪完成签到,获得积分10
5秒前
5秒前
6秒前
goodgoodstudy发布了新的文献求助10
8秒前
善学以致用应助专注钢笔采纳,获得10
8秒前
澍澍完成签到,获得积分10
9秒前
愤怒也哈哈完成签到,获得积分10
9秒前
老乡开下门吧完成签到 ,获得积分10
9秒前
平常的大地完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
winew完成签到 ,获得积分10
11秒前
HY发布了新的文献求助10
11秒前
时生发布了新的文献求助10
12秒前
12秒前
13秒前
yizhu完成签到 ,获得积分10
13秒前
13秒前
14秒前
14秒前
蔺小轩发布了新的文献求助10
14秒前
水门发布了新的文献求助10
14秒前
Aisha发布了新的文献求助10
15秒前
山沟沟发布了新的文献求助10
16秒前
大方泥猴桃完成签到,获得积分10
16秒前
memore完成签到 ,获得积分10
16秒前
xinlu发布了新的文献求助10
17秒前
所所应助PROPELLER采纳,获得10
17秒前
墨子白发布了新的文献求助10
18秒前
18秒前
18秒前
lanheqingniao发布了新的文献求助10
18秒前
小二郎应助silin采纳,获得10
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770036
求助须知:如何正确求助?哪些是违规求助? 3315178
关于积分的说明 10174729
捐赠科研通 3030246
什么是DOI,文献DOI怎么找? 1662772
邀请新用户注册赠送积分活动 795095
科研通“疑难数据库(出版商)”最低求助积分说明 756560