Rapid seismic damage evaluation of bridge portfolios using machine learning techniques

桥(图论) 脆弱性 计算机科学 结构工程 强化学习 集合(抽象数据类型) 工程类 机器学习 可靠性工程 人工智能 医学 内科学 化学 物理化学 程序设计语言
作者
Sujith Mangalathu,Seong‐Hoon Hwang,Eunsoo Choi,Jong‐Su Jeon
出处
期刊:Engineering Structures [Elsevier]
卷期号:201: 109785-109785 被引量:159
标识
DOI:10.1016/j.engstruct.2019.109785
摘要

The damage state of a bridge has significant implications on the post-earthquake emergency traffic and recovery operations and is critical to identify the post-earthquake damage states without much delay. Currently, the damage states are identified either based on visual inspection or pre-determined fragility curves. Although these methodologies can provide useful information, the timely application of these methodologies for large scale regional damage assessments is often limited due to the manual or computational efforts. This paper proposes a methodology for the rapid damage state assessment (green, yellow, or red) of bridges utilizing the capabilities of machine learning techniques. Contrary to the existing methods, the proposed methodology accounts for bridge-specific attributes in the damage state assessment. The proposed methodology is demonstrated using two-span box-girder bridges in California. The prediction model is established using the training set, and the performance of the model is evaluated using the test set. It is noted that the machine learning algorithm called Random Forest provides better performance for the selected bridges, and its tagging accuracy ranges from 73% to 82% depending on the bridge configuration under consideration. The proposed methodology revealed that input parameters such as span length and reinforcement ratio in addition to the ground motion intensity parameter have a significant influence on the expected damage state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanyan发布了新的文献求助10
1秒前
繁笙完成签到 ,获得积分10
1秒前
1秒前
无言完成签到 ,获得积分10
1秒前
NONO完成签到 ,获得积分10
2秒前
星辰大海应助TT采纳,获得10
2秒前
4秒前
康康完成签到,获得积分10
4秒前
Xv完成签到,获得积分0
4秒前
7秒前
7秒前
香蕉觅云应助zfzf0422采纳,获得10
7秒前
8秒前
8秒前
李健应助爱听歌的向日葵采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
烟花应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得80
9秒前
所所应助科研通管家采纳,获得20
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得30
10秒前
婷婷发布了新的文献求助10
10秒前
zzt完成签到,获得积分10
12秒前
张小汉发布了新的文献求助30
13秒前
二十四发布了新的文献求助10
13秒前
赘婿应助junzilan采纳,获得10
13秒前
FashionBoy应助勤恳的雨文采纳,获得10
13秒前
aaa完成签到,获得积分10
14秒前
15秒前
11111完成签到,获得积分20
16秒前
仔wang完成签到,获得积分10
16秒前
18秒前
忘羡222发布了新的文献求助20
18秒前
18秒前
温暖涫完成签到,获得积分10
20秒前
11111发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824