Rapid seismic damage evaluation of bridge portfolios using machine learning techniques

桥(图论) 脆弱性 计算机科学 结构工程 强化学习 集合(抽象数据类型) 工程类 机器学习 可靠性工程 人工智能 医学 内科学 物理化学 化学 程序设计语言
作者
Sujith Mangalathu,Seong‐Hoon Hwang,Eunsoo Choi,Jong‐Su Jeon
出处
期刊:Engineering Structures [Elsevier]
卷期号:201: 109785-109785 被引量:159
标识
DOI:10.1016/j.engstruct.2019.109785
摘要

The damage state of a bridge has significant implications on the post-earthquake emergency traffic and recovery operations and is critical to identify the post-earthquake damage states without much delay. Currently, the damage states are identified either based on visual inspection or pre-determined fragility curves. Although these methodologies can provide useful information, the timely application of these methodologies for large scale regional damage assessments is often limited due to the manual or computational efforts. This paper proposes a methodology for the rapid damage state assessment (green, yellow, or red) of bridges utilizing the capabilities of machine learning techniques. Contrary to the existing methods, the proposed methodology accounts for bridge-specific attributes in the damage state assessment. The proposed methodology is demonstrated using two-span box-girder bridges in California. The prediction model is established using the training set, and the performance of the model is evaluated using the test set. It is noted that the machine learning algorithm called Random Forest provides better performance for the selected bridges, and its tagging accuracy ranges from 73% to 82% depending on the bridge configuration under consideration. The proposed methodology revealed that input parameters such as span length and reinforcement ratio in addition to the ground motion intensity parameter have a significant influence on the expected damage state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
wwwwwei发布了新的文献求助10
刚刚
trayheep完成签到,获得积分10
刚刚
Harry完成签到,获得积分10
1秒前
自由的冰蓝完成签到,获得积分10
1秒前
华仔应助吴桐采纳,获得20
2秒前
3秒前
Harry发布了新的文献求助10
3秒前
4秒前
5秒前
三寸光阴发布了新的文献求助10
5秒前
境由心生完成签到,获得积分10
5秒前
狂野的山雁完成签到,获得积分10
5秒前
852应助关关采纳,获得30
7秒前
7秒前
9秒前
suibiao发布了新的文献求助10
9秒前
10秒前
星辰大海应助Kelly采纳,获得10
12秒前
12秒前
Dorren完成签到,获得积分10
13秒前
13秒前
小李飞刀发布了新的文献求助10
14秒前
14秒前
yusong发布了新的文献求助10
15秒前
欣慰的水壶完成签到,获得积分10
15秒前
15秒前
吴桐发布了新的文献求助20
16秒前
归海神刀完成签到,获得积分10
18秒前
18秒前
19秒前
星辰大海应助Yummy采纳,获得10
19秒前
19秒前
道元完成签到,获得积分10
19秒前
三寸光阴完成签到,获得积分10
20秒前
领导范儿应助代代代代采纳,获得10
21秒前
21秒前
21秒前
可爱的函函应助科研丁真采纳,获得10
21秒前
Nanami24发布了新的文献求助10
22秒前
万能图书馆应助马放南山采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492156
求助须知:如何正确求助?哪些是违规求助? 4590429
关于积分的说明 14430292
捐赠科研通 4522780
什么是DOI,文献DOI怎么找? 2478060
邀请新用户注册赠送积分活动 1463106
关于科研通互助平台的介绍 1435756