共发射极
材料科学
热光电伏打
光学
光电子学
热的
热发射率
光子晶体
电介质
红外线的
光子学
窄带
极化(电化学)
物理
梁(结构)
化学
气象学
物理化学
作者
Xingxing Liu,Zhiwei Li,Zhengji Wen,Mingfei Wu,Jialiang Lu,Chen Xu,Xinchao Zhao,Tao Wang,Ruonan Ji,Yafeng Zhang,Liaoxin Sun,Bo Zhang,Hao Xu,Jing Zhou,Jiaming Hao,Shaowei Wang,Xiaohong Chen,Ning Dai,Wei Lü,Xuechu Shen
出处
期刊:Nanoscale
[The Royal Society of Chemistry]
日期:2019-01-01
卷期号:11 (42): 19742-19750
被引量:42
摘要
Thermal radiation with narrow bandwidth and well-defined emission directions is highly sought after for a variety of applications, ranging from infrared sensing and thermal imaging to thermophotovoltaics. Here, a large-area (4-inch-diameter) long-wavelength infrared thermal emitter is presented, which is spectrally selective, highly directional, and easily fabricated. The basic structure of the proposed thermal emitter is composed of a truncated one-dimensional photonic crystal and a continuous metallic film separated by a dielectric spacer. Experimental results show that the emitter exhibits a narrowband thermal emittance peak of 92% in the normal direction at the wavenumber of 943.4 cm-1 with a bandwidth of 12.5 cm-1 and a narrow angular emission lobe with a limited solid angle of 0.325 sr (0.115 sr) for s (p) polarization. Numerical simulation analyses are performed to corroborate the experimental observations. Temporal coupled-mode theory combined with transfer matrix method is employed to analytically investigate the emission properties of the structure, which not only can be used to understand the experimental results, but also plays a certain guidance role in designing a thermal emitter with the desired properties. The present thermal emitter can be implemented for thermal photonics management, allowing applications in thermal imaging and medical systems, etc.
科研通智能强力驱动
Strongly Powered by AbleSci AI