异质结
欧姆接触
肖特基势垒
偶极子
材料科学
范德瓦尔斯力
类型(生物学)
物理
响应度
凝聚态物理
结晶学
光电子学
电极
化学
量子力学
分子
生物
生态学
二极管
光电探测器
作者
Jing Li,Wenqiang Liu,Wenhan Zhou,Jialin Yang,Hengze Qu,Yang Hu,Shengli Zhang
标识
DOI:10.1103/physrevapplied.17.054009
摘要
A Schottky barrier, formed in the contact of a two-dimensional (2D) semiconductor and metal electrode, seriously degrades device performance. Herein, we propose a dipole-engineering strategy to regulate the electronic contact properties of a 2D polar $\mathrm{Sb}$X (X = $\mathrm{P}$, $\mathrm{As}$, $\mathrm{Bi}$) and graphene ($\mathrm{Gr}$) van der Waals interface. Owing to the mirror asymmetry of $\mathrm{Sb}$X, we construct seven vertical heterostructures in the form of X$\mathrm{Sb}$-$\mathrm{Gr}$ and $\mathrm{Sb}$X$\text{\ensuremath{-}}\mathrm{Gr}$. Tunable Schottky barrier height and contact type can be obtained by using different atomic terminals to contact with $\mathrm{Gr}$. Based on the first-principles calculations, the dipole and its associated potential step are found to be responsible for the regulating effect. Moreover, owing to the remarkable properties of the $\mathrm{Sb}\mathrm{Bi}$-$\mathrm{Gr}$ heterostructure, such as Ohmic contact and low tunneling barrier, we design an optoelectronic field-effect transistor, which exhibits considerable responsivity (0.089 ${\mathrm{AW}}^{\ensuremath{-}1}$) and external quantum efficiency (28.57%). Our findings further confirm that regulating the electronic contact properties by the dipole in the heterostructure is a feasible strategy, which provides meaningful guidance for designing high-performance electronic and optoelectronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI