Improvement of synaptic plasticity by nanoparticles and the related mechanisms: Applications and prospects

突触可塑性 神经科学 突触标度 非突触性可塑性 变质塑性 同突触可塑性 神经炎症 神经可塑性 生物 化学 受体 炎症 生物化学 免疫学
作者
Aijie Chen,Yiyuan Kang,Jia Liu,Junrong Wu,Xiaoli Feng,Menglei Wang,Yanli Zhang,Ruolan Wang,Xuan Lai,Longquan Shao
出处
期刊:Journal of Controlled Release [Elsevier BV]
卷期号:347: 143-163 被引量:8
标识
DOI:10.1016/j.jconrel.2022.04.049
摘要

Synaptic plasticity is an important basis of learning and memory and participates in brain network remodelling after different types of brain injury (such as that caused by neurodegenerative diseases, cerebral ischaemic injury, posttraumatic stress disorder (PTSD), and psychiatric disorders). Therefore, improving synaptic plasticity is particularly important for the treatment of nervous system-related diseases. With the rapid development of nanotechnology, increasing evidence has shown that nanoparticles (NPs) can cross the blood–brain barrier (BBB) in different ways, directly or indirectly act on nerve cells, regulate synaptic plasticity, and ultimately improve nerve function. Therefore, to better elucidate the effect of NPs on synaptic plasticity, we review evidence showing that NPs can improve synaptic plasticity by regulating different influencing factors, such as neurotransmitters, receptors, presynaptic membrane proteins and postsynaptic membrane proteins, and further discuss the possible mechanism by which NPs improve synaptic plasticity. We conclude that NPs can improve synaptic plasticity and restore the function of damaged nerves by inhibiting neuroinflammation and oxidative stress, inducing autophagy, and regulating ion channels on the cell membrane. By reviewing the mechanism by which NPs regulate synaptic plasticity and the applications of NPs for the treatment of neurological diseases, we also propose directions for future research in this field and provide an important reference for follow-up research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
3秒前
ty完成签到,获得积分20
4秒前
SYLH应助冷艳笑卉采纳,获得10
4秒前
务实凡灵完成签到,获得积分10
4秒前
风中怜寒发布了新的文献求助10
4秒前
5秒前
害羞无春发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
牛牛发布了新的文献求助10
6秒前
123发布了新的文献求助10
7秒前
小蘑菇应助研友_LwbeX8采纳,获得10
7秒前
科研通AI2S应助ymxlcfc采纳,获得10
7秒前
7秒前
mirayq发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
chen发布了新的文献求助10
9秒前
zzz发布了新的文献求助30
10秒前
香蕉觅云应助优秀星星采纳,获得10
10秒前
mawenxing完成签到,获得积分10
10秒前
英俊的铭应助YY采纳,获得10
11秒前
青衣北风发布了新的文献求助10
11秒前
乏味发布了新的文献求助10
11秒前
CAOHOU应助1234采纳,获得10
11秒前
smin发布了新的文献求助10
11秒前
过时的维度完成签到,获得积分10
12秒前
1111应助178181采纳,获得10
12秒前
13秒前
blingl发布了新的文献求助20
14秒前
Jalynn2044完成签到 ,获得积分10
14秒前
15秒前
LDDDGR发布了新的文献求助10
15秒前
彭于晏应助司徒代云采纳,获得10
15秒前
陈漂亮发布了新的文献求助30
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979392
求助须知:如何正确求助?哪些是违规求助? 3523308
关于积分的说明 11217159
捐赠科研通 3260797
什么是DOI,文献DOI怎么找? 1800211
邀请新用户注册赠送积分活动 878960
科研通“疑难数据库(出版商)”最低求助积分说明 807113