EEG and fMRI coupling and decoupling based on joint independent component analysis (jICA)

脑电图 功能磁共振成像 同步脑电与功能磁共振 计算机科学 独立成分分析 模式识别(心理学) 神经影像学 人工智能 语音识别 心理学 神经科学
作者
Nicholas Heugel,Scott A. Beardsley,Einat Liebenthal
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:369: 109477-109477 被引量:2
标识
DOI:10.1016/j.jneumeth.2022.109477
摘要

Meaningful integration of functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) requires knowing whether these measurements reflect the activity of the same neural sources, i.e., estimating the degree of coupling and decoupling between the neuroimaging modalities. This paper proposes a method to quantify the coupling and decoupling of fMRI and EEG signals based on the mixing matrix produced by joint independent component analysis (jICA). The method is termed fMRI/EEG-jICA. fMRI and EEG acquired during a syllable detection task with variable syllable presentation rates (0.25–3 Hz) were separated with jICA into two spatiotemporally distinct components, a primary component that increased nonlinearly in amplitude with syllable presentation rate, putatively reflecting an obligatory auditory response, and a secondary component that declined nonlinearly with syllable presentation rate, putatively reflecting an auditory attention orienting response. The two EEG subcomponents were of similar amplitude, but the secondary fMRI subcomponent was ten folds smaller than the primary one. FMRI multiple regression analysis yielded a map more consistent with the primary than secondary fMRI subcomponent of jICA, as determined by a greater area under the curve (0.5 versus 0.38) in a sensitivity and specificity analysis of spatial overlap. fMRI/EEG-jICA revealed spatiotemporally distinct brain networks with greater sensitivity than fMRI multiple regression analysis, demonstrating how this method can be used for leveraging EEG signals to inform the detection and functional characterization of fMRI signals. fMRI/EEG-jICA may be useful for studying neurovascular coupling at a macro-level, e.g., in neurovascular disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxy发布了新的文献求助10
刚刚
刚刚
SnowPeak7发布了新的文献求助10
刚刚
包听枫发布了新的文献求助20
刚刚
7788999发布了新的文献求助10
刚刚
渐心见远发布了新的文献求助10
刚刚
十三完成签到 ,获得积分10
1秒前
爱啃文的小郝完成签到,获得积分10
2秒前
李爱国应助Kenzonvay采纳,获得10
4秒前
hw发布了新的文献求助10
4秒前
冰冰发布了新的文献求助10
4秒前
4秒前
Sakura发布了新的文献求助10
4秒前
星辰大海应助小溪采纳,获得10
4秒前
Wei Qin发布了新的文献求助10
5秒前
YT应助strugglejsp采纳,获得10
5秒前
5秒前
木马病毒完成签到 ,获得积分10
5秒前
6秒前
心灵美复天完成签到,获得积分10
6秒前
bkagyin应助攒星星采纳,获得10
7秒前
深情安青应助Nancy采纳,获得10
8秒前
Once完成签到,获得积分10
8秒前
Nagi完成签到,获得积分10
8秒前
123发布了新的文献求助10
9秒前
科研通AI2S应助欣欣丽丽采纳,获得10
10秒前
10秒前
852应助禹无极采纳,获得10
11秒前
11秒前
11秒前
12秒前
12秒前
Wei Qin完成签到,获得积分10
13秒前
鱼儿123发布了新的文献求助30
13秒前
Olivia发布了新的文献求助10
14秒前
gggja发布了新的文献求助10
14秒前
15秒前
Ooops完成签到,获得积分10
15秒前
15秒前
生工跑路ing完成签到,获得积分10
15秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3054545
求助须知:如何正确求助?哪些是违规求助? 2711512
关于积分的说明 7426610
捐赠科研通 2356104
什么是DOI,文献DOI怎么找? 1247642
科研通“疑难数据库(出版商)”最低求助积分说明 606478
版权声明 596079