亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EEG and fMRI coupling and decoupling based on joint independent component analysis (jICA)

脑电图 功能磁共振成像 同步脑电与功能磁共振 计算机科学 独立成分分析 模式识别(心理学) 神经影像学 人工智能 语音识别 心理学 神经科学
作者
Nicholas Heugel,Scott A. Beardsley,Einat Liebenthal
出处
期刊:Journal of Neuroscience Methods [Elsevier BV]
卷期号:369: 109477-109477 被引量:2
标识
DOI:10.1016/j.jneumeth.2022.109477
摘要

Meaningful integration of functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) requires knowing whether these measurements reflect the activity of the same neural sources, i.e., estimating the degree of coupling and decoupling between the neuroimaging modalities. This paper proposes a method to quantify the coupling and decoupling of fMRI and EEG signals based on the mixing matrix produced by joint independent component analysis (jICA). The method is termed fMRI/EEG-jICA. fMRI and EEG acquired during a syllable detection task with variable syllable presentation rates (0.25–3 Hz) were separated with jICA into two spatiotemporally distinct components, a primary component that increased nonlinearly in amplitude with syllable presentation rate, putatively reflecting an obligatory auditory response, and a secondary component that declined nonlinearly with syllable presentation rate, putatively reflecting an auditory attention orienting response. The two EEG subcomponents were of similar amplitude, but the secondary fMRI subcomponent was ten folds smaller than the primary one. FMRI multiple regression analysis yielded a map more consistent with the primary than secondary fMRI subcomponent of jICA, as determined by a greater area under the curve (0.5 versus 0.38) in a sensitivity and specificity analysis of spatial overlap. fMRI/EEG-jICA revealed spatiotemporally distinct brain networks with greater sensitivity than fMRI multiple regression analysis, demonstrating how this method can be used for leveraging EEG signals to inform the detection and functional characterization of fMRI signals. fMRI/EEG-jICA may be useful for studying neurovascular coupling at a macro-level, e.g., in neurovascular disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
唐唐完成签到 ,获得积分10
2秒前
研友_8RyzBZ发布了新的文献求助10
5秒前
Hayat应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
ceeray23应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
15秒前
21秒前
吾系渣渣辉完成签到 ,获得积分10
22秒前
MedicoYang发布了新的文献求助10
23秒前
毕业就行完成签到,获得积分10
23秒前
Brady6发布了新的文献求助50
26秒前
ceeray23应助MedicoYang采纳,获得10
27秒前
Duan完成签到 ,获得积分10
38秒前
汤圆完成签到 ,获得积分10
42秒前
Owen应助快乐的篮球采纳,获得10
44秒前
小神仙完成签到 ,获得积分10
49秒前
50秒前
懒羊羊完成签到 ,获得积分10
52秒前
53秒前
苹果绿发布了新的文献求助10
53秒前
Linda00发布了新的文献求助10
55秒前
57秒前
慕青应助RR采纳,获得10
59秒前
高高烙完成签到,获得积分10
1分钟前
合适的语雪完成签到,获得积分20
1分钟前
YYYY发布了新的文献求助30
1分钟前
隐形曼青应助玖生采纳,获得10
1分钟前
科研通AI5应助苹果绿采纳,获得10
1分钟前
jianglan完成签到,获得积分10
1分钟前
lijunliang完成签到,获得积分10
1分钟前
快乐的篮球完成签到,获得积分10
1分钟前
恋晨完成签到 ,获得积分10
1分钟前
想游泳的鹰完成签到,获得积分10
1分钟前
田様应助mkeale采纳,获得10
1分钟前
思辰。完成签到,获得积分10
1分钟前
852应助Brian_Lee采纳,获得10
1分钟前
1分钟前
WindStar完成签到,获得积分10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5198143
求助须知:如何正确求助?哪些是违规求助? 4379256
关于积分的说明 13637786
捐赠科研通 4235192
什么是DOI,文献DOI怎么找? 2323275
邀请新用户注册赠送积分活动 1321351
关于科研通互助平台的介绍 1272189