Cloud Detection Using Fully Convolutional Network with Zynq SoC for Spaceborne Application

计算机科学 云计算 深度学习 卷积(计算机科学) 卷积神经网络 加速 人工智能 交叉口(航空) 特征提取 计算 实时计算 模式识别(心理学) 算法 并行计算 操作系统 人工神经网络 工程类 航空航天工程
作者
Xiongbin Yu,Peng Yu,Liansheng Liu
标识
DOI:10.1109/icsmd53520.2021.9670551
摘要

Cloud detection is an important step to avoid the interference of contaminated areas in the remote sensing image. At present, the onboard cloud detection using deep learning is an attractive idea to provide the solution for detecting cloud contaminated region with high accuracy in real-time. However, the method based on deep learning has a large amount of model parameters and requires high computation resources, which is difficult for deployment in the onboard scenario. To address this issue, the cloud detection using the fully convolutional network with Zynq SoC is proposed in this article. Multiple convolution layers in a fully convolutional network are used to extract deep semantic features to improve the accuracy of cloud detection in different scenarios. And a custom computing architecture with full-precision parameters is conducted, which utilizes the loop tiling for feature maps and general matrix multiplication with parallel computing for convolution. The proposed network is deployed under the limited hardware resource. Experimental results indicate that the mean intersection over union of the proposed method is 90.39%, and the pixel accuracy reaches 95.79%. Compared with the implementation on ARM, the proposed method can achieve about 18.84 times speedup.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_EZ1KkL完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
0009987完成签到,获得积分10
2秒前
2秒前
ding应助月不笑采纳,获得10
2秒前
suohaiyun发布了新的文献求助10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
3秒前
小宋发布了新的文献求助10
3秒前
大个应助科研通管家采纳,获得30
3秒前
吃人陈发布了新的文献求助10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
liuchengrui应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
kagaminelen完成签到,获得积分10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
mengtingmei应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
xdd完成签到,获得积分10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
4秒前
卤味狮子头完成签到,获得积分10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791