计算机科学
云计算
深度学习
卷积(计算机科学)
卷积神经网络
加速
人工智能
交叉口(航空)
特征提取
计算
实时计算
模式识别(心理学)
算法
并行计算
操作系统
人工神经网络
工程类
航空航天工程
作者
Xiongbin Yu,Peng Yu,Liansheng Liu
标识
DOI:10.1109/icsmd53520.2021.9670551
摘要
Cloud detection is an important step to avoid the interference of contaminated areas in the remote sensing image. At present, the onboard cloud detection using deep learning is an attractive idea to provide the solution for detecting cloud contaminated region with high accuracy in real-time. However, the method based on deep learning has a large amount of model parameters and requires high computation resources, which is difficult for deployment in the onboard scenario. To address this issue, the cloud detection using the fully convolutional network with Zynq SoC is proposed in this article. Multiple convolution layers in a fully convolutional network are used to extract deep semantic features to improve the accuracy of cloud detection in different scenarios. And a custom computing architecture with full-precision parameters is conducted, which utilizes the loop tiling for feature maps and general matrix multiplication with parallel computing for convolution. The proposed network is deployed under the limited hardware resource. Experimental results indicate that the mean intersection over union of the proposed method is 90.39%, and the pixel accuracy reaches 95.79%. Compared with the implementation on ARM, the proposed method can achieve about 18.84 times speedup.
科研通智能强力驱动
Strongly Powered by AbleSci AI