已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-operator immune genetic algorithm for project scheduling with discounted cash flows

渡线 计算机科学 操作员(生物学) 数学优化 水准点(测量) 遗传算法 局部搜索(优化) 调度(生产过程) 算法 数学 人工智能 机器学习 基因 转录因子 生物化学 抑制因子 化学 地理 大地测量学
作者
Md. Asadujjaman,Humyun Fuad Rahman,Ripon K. Chakrabortty,Michael J. Ryan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:195: 116589-116589 被引量:12
标识
DOI:10.1016/j.eswa.2022.116589
摘要

The resource constrained project scheduling problem with discounted cash flows (RCPSPDC) is one of the most challenging problems owing to its NP-hard characteristics. This complex combinatorial optimization problem is most relevant to project management, building and construction management, and production planning. Although several solution methods have been suggested to solve the RCPSPDC, no single method has been shown to be the best for a wide range of problems. In this study, a multi-operator immune genetic algorithm, called MO-IGA, is proposed which integrates a genetic algorithm (GA) and an immune algorithm (IA) to solve the RCPSPDC. Two different operators for each crossover, mutation, immunization, and local search operation are utilized dynamically in the MO-IGA framework. Variable insertion neighborhood search (VINS) and forward–backward improvement (FBI) are utilized for local search to enrich the searching behavior and exploration. The algorithm starts with the same probability for each crossover, mutation, immunization, and local search operator; however, the probability is updated dynamically depending on the success of each operator in producing the quality solution. An activity move rule (AMR) has been utilized to delay the task with negative cash flows as much as possible, which further improves the overall project's net present value (NPV). A standard benchmark dataset, comprising 17,280 project instances ranging from 25 to 100 activities, is used to test the performance and effectiveness of the proposed MO-IGA. The proposed MO-IGA outperforms several datasets based on both a lower value of the average percentage deviation and the number of feasible schedule generations. The proposed MO-IGA is also shown to be more effective than the multi-operator GA (MO-GA) and multi-operator IA (MO-IA). Extensive numerical analysis, statistical tests, and comparisons with state-of-the-art algorithms proves the effectiveness of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ymygdz完成签到,获得积分10
1秒前
科研通AI2S应助万晶采纳,获得10
2秒前
5秒前
Yam完成签到,获得积分10
5秒前
6秒前
燕晓啸完成签到 ,获得积分0
6秒前
8秒前
10秒前
11秒前
光亮的半山完成签到,获得积分10
11秒前
开朗满天完成签到 ,获得积分10
11秒前
11秒前
何博发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
笨苯苯发布了新的文献求助10
17秒前
lengyan发布了新的文献求助10
17秒前
喜宝完成签到 ,获得积分10
19秒前
hyyy完成签到 ,获得积分10
19秒前
脑洞疼应助自由的成仁采纳,获得10
21秒前
21秒前
Shueason完成签到 ,获得积分10
21秒前
21秒前
22秒前
23秒前
汤汤完成签到 ,获得积分10
25秒前
何博完成签到,获得积分10
25秒前
26秒前
lengyan发布了新的文献求助10
26秒前
哈哈发布了新的文献求助10
27秒前
微弱de胖头完成签到,获得积分20
27秒前
香蕉觅云应助ymygdz采纳,获得10
27秒前
xiaorui发布了新的文献求助10
28秒前
29秒前
万晶完成签到,获得积分20
30秒前
钮卿完成签到 ,获得积分10
32秒前
桐桐应助哈哈采纳,获得10
34秒前
36秒前
36秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158547
求助须知:如何正确求助?哪些是违规求助? 2809652
关于积分的说明 7883366
捐赠科研通 2468389
什么是DOI,文献DOI怎么找? 1314115
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601963