亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reconciling data-driven crime analysis with human-centered algorithms

民族 人口 人口普查 财产犯罪 劣势 移民 地理 人口经济学 人口学 犯罪学 社会学 经济 暴力犯罪 政治学 法学 考古
作者
Kevin W. Clancy,Joseph Chudzik,Aleksandra J. Snowden,Min Kyung Lee
出处
期刊:Cities [Elsevier BV]
卷期号:124: 103604-103604 被引量:11
标识
DOI:10.1016/j.cities.2022.103604
摘要

This study combines traditional statistical methods with machine learning to better understand locally relevant, contextual models for analyzing crime in two urban American cities. Using census tracts as the units of analysis and controlling for several structural characteristics associated with crime, we find that in Milwaukee, Wisconsin, violent crime is associated with concentrated disadvantage, residential stability, ethnic heterogeneity, total population, and spatial lag of violent crime. Yet, the most important variable is the spatial lag of violent crime, followed by residential stability, ethnic heterogeneity, total population, and concentrated disadvantage. In addition, we find that in Chicago, Illinois, violent crime is associated with immigration, owner-occupied housing, proportion in professional occupations, and proportion population with college degree or higher, as well as ethnic heterogeneity, total population, and the spatial lag for violent crime. Machine learning models suggest that for Chicago's violent crime, the most important variable is the spatial lag term for violent crime, followed by total population, immigration, college education or beyond, owner occupancy, ethnic heterogeneity, and employment in professional occupations. The findings for property crime are similar: in Milwaukee, we find that disadvantage, residential stability, ethnic heterogeneity, total population and spatial lag for property crime are significant predictors in the traditional regression models. However, the most important variable for property crime in Milwaukee is the spatial lag term, followed by total population, ethnic heterogeneity, residential stability and disadvantage. The statistically significant predictors of property crime in Chicago include immigration, owner-occupied housing units, living in the same house, proportion of workforce in professional occupations, college education and beyond, total population, and the spatial lag for property crime. In Chicago, the most important variable for property crime is the spatial lag term, then the total population, the proportion of individuals in professional occupations, concentrated immigration, college education and beyond, living in the same house, and the proportion of owner-occupied housing units. Urban planners must consider policies that can effectively reduce nearby crime and violence in all cities that experience high crime levels, but also design locally responsive policies that make sense within a local context: in Milwaukee, residential stability matters more for violent crime than for property crime, while in Chicago, total population is similarly important for both violent crime and property crime. In Milwaukee, ethnic heterogeneity is similarly important for violent and property crime, while in Chicago, ethnic heterogeneity is not a very important variable for violent crime and it is not a significant predictor of property crime. Therefore, urban policy must differently approach social disorganization indicators and support the nuances of the local context for urban planning and policy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy发布了新的文献求助10
2秒前
顾矜应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得30
9秒前
量子星尘发布了新的文献求助10
20秒前
tranphucthinh完成签到,获得积分0
32秒前
xyx完成签到,获得积分10
37秒前
悄悄拔尖儿完成签到 ,获得积分10
46秒前
yyy发布了新的文献求助10
1分钟前
MchemG举报甜晞求助涉嫌违规
1分钟前
yyy发布了新的文献求助10
2分钟前
lulululululu完成签到,获得积分10
2分钟前
2分钟前
lulululululu发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
MchemG举报棉花糖求助涉嫌违规
2分钟前
吱吱发布了新的文献求助10
2分钟前
吱吱完成签到,获得积分10
2分钟前
2分钟前
3分钟前
4分钟前
画晴完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
liia完成签到,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
田様应助义气雁采纳,获得10
5分钟前
5分钟前
mashibeo完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
rrrrrrry发布了新的文献求助10
6分钟前
Sylvia_J完成签到 ,获得积分10
7分钟前
平淡道天完成签到,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
CodeCraft应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015149
求助须知:如何正确求助?哪些是违规求助? 3555115
关于积分的说明 11317881
捐赠科研通 3288577
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983