Reconciling data-driven crime analysis with human-centered algorithms

民族 人口 人口普查 财产犯罪 劣势 移民 地理 人口经济学 人口学 犯罪学 社会学 经济 暴力犯罪 政治学 法学 考古
作者
Kevin W. Clancy,Joseph Chudzik,Aleksandra J. Snowden,Min Kyung Lee
出处
期刊:Cities [Elsevier]
卷期号:124: 103604-103604 被引量:11
标识
DOI:10.1016/j.cities.2022.103604
摘要

This study combines traditional statistical methods with machine learning to better understand locally relevant, contextual models for analyzing crime in two urban American cities. Using census tracts as the units of analysis and controlling for several structural characteristics associated with crime, we find that in Milwaukee, Wisconsin, violent crime is associated with concentrated disadvantage, residential stability, ethnic heterogeneity, total population, and spatial lag of violent crime. Yet, the most important variable is the spatial lag of violent crime, followed by residential stability, ethnic heterogeneity, total population, and concentrated disadvantage. In addition, we find that in Chicago, Illinois, violent crime is associated with immigration, owner-occupied housing, proportion in professional occupations, and proportion population with college degree or higher, as well as ethnic heterogeneity, total population, and the spatial lag for violent crime. Machine learning models suggest that for Chicago's violent crime, the most important variable is the spatial lag term for violent crime, followed by total population, immigration, college education or beyond, owner occupancy, ethnic heterogeneity, and employment in professional occupations. The findings for property crime are similar: in Milwaukee, we find that disadvantage, residential stability, ethnic heterogeneity, total population and spatial lag for property crime are significant predictors in the traditional regression models. However, the most important variable for property crime in Milwaukee is the spatial lag term, followed by total population, ethnic heterogeneity, residential stability and disadvantage. The statistically significant predictors of property crime in Chicago include immigration, owner-occupied housing units, living in the same house, proportion of workforce in professional occupations, college education and beyond, total population, and the spatial lag for property crime. In Chicago, the most important variable for property crime is the spatial lag term, then the total population, the proportion of individuals in professional occupations, concentrated immigration, college education and beyond, living in the same house, and the proportion of owner-occupied housing units. Urban planners must consider policies that can effectively reduce nearby crime and violence in all cities that experience high crime levels, but also design locally responsive policies that make sense within a local context: in Milwaukee, residential stability matters more for violent crime than for property crime, while in Chicago, total population is similarly important for both violent crime and property crime. In Milwaukee, ethnic heterogeneity is similarly important for violent and property crime, while in Chicago, ethnic heterogeneity is not a very important variable for violent crime and it is not a significant predictor of property crime. Therefore, urban policy must differently approach social disorganization indicators and support the nuances of the local context for urban planning and policy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助Neo采纳,获得10
刚刚
2秒前
2秒前
2秒前
2秒前
科研通AI2S应助夏蓉采纳,获得10
2秒前
猪猪猪完成签到,获得积分10
3秒前
3秒前
lkk发布了新的文献求助20
3秒前
LN发布了新的文献求助10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
南瓜难应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
峰宝宝发布了新的文献求助10
5秒前
风中如风完成签到,获得积分10
6秒前
6秒前
dyyyy发布了新的文献求助10
6秒前
7秒前
tianzml0应助Jenny采纳,获得30
8秒前
YANG发布了新的文献求助10
8秒前
xiahaooooo完成签到,获得积分10
8秒前
西伯利亚蟑螂玩冰嬉完成签到 ,获得积分10
9秒前
9秒前
逻辑猫完成签到,获得积分10
10秒前
圆圆完成签到,获得积分10
10秒前
11秒前
星星之火发布了新的文献求助10
11秒前
12秒前
12秒前
小写发布了新的文献求助10
13秒前
修仙应助wyblobin采纳,获得10
13秒前
寒冷的断缘完成签到,获得积分10
14秒前
14秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157866
求助须知:如何正确求助?哪些是违规求助? 2809202
关于积分的说明 7880857
捐赠科研通 2467704
什么是DOI,文献DOI怎么找? 1313664
科研通“疑难数据库(出版商)”最低求助积分说明 630476
版权声明 601943