Multimodal Sentiment Analysis: Review, Application Domains and Future Directions

情绪分析 模式 计算机科学 模态(人机交互) 社会化媒体 上传 互联网 微博 数据科学 人口 万维网 情报检索 人工智能 社会科学 社会学 人口学
作者
Ankita Gandhi,Kinjal Adhvaryu,Vidhi Khanduja
标识
DOI:10.1109/punecon52575.2021.9686504
摘要

In this information age, opinion mining which is also known as sentiment analysis turns up to be the most important task in the field of natural language processing. Previous literature in area of sentiment analysis which mostly focused on single modality that is on textual data. Almost all the latest advancement in the sentiment analysis are using textual dataset and resources only. With the invent of internet which increases the use of social media, people are using vlogs, videos, pictures, audios, emojis and microblogs to represent their opinions on different web platforms. In this new media age, every day 720k hours of videos are uploaded on alone Youtube only. We have number of such platforms like YouTube. In the classical methods other modalities’ expressiveness is overlooked and thus these methods fail to generate accurate results. Numerous commercial applications used the aggregation of sentiments and opinions of individuals by anticipating large population. Thus, it is highly necessary that the diverse modalities from the raw data available from the internet should be utilized to mine opinions and identify sentiments. Varied data (i.e., text, speech, visual and code-mixed data) available over internet is integrated by Multimodal Sentiment Analysis. Multimodality refers to more than one modality like bimodal which uses any two modalities or trimodal which uses all the three modalities. Each modality offers its own exclusive features and can be collectively used to mine their positive or negative sentiments, opinions or responses about the entity. The latest development in multimodal sentiment analysis is that the diverse modalities i.e., audio, visual and textual are fused to generate better accuracy. Also, language and culture independent and speaker independent models can be generated. In this survey, we have defined various fusion techniques for sentiment analysis using multiple modalities, characteristics, features for multimodal sentiment analysis. This paper gives an outline of latest approaches used for multimodal sentiment analysis and various application domains in the field of multimodal Sentiment analysis using traditional methods as well as various deep learning methods. It also describes emerging areas of research in sentiment analysis using multimodal data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助静然采纳,获得10
刚刚
1秒前
1秒前
在水一方应助SR4采纳,获得10
2秒前
大个应助Skylar采纳,获得10
3秒前
蹦蹦发布了新的文献求助10
3秒前
JM完成签到,获得积分10
3秒前
3秒前
3秒前
5秒前
lll发布了新的文献求助10
6秒前
沉静秋尽发布了新的文献求助10
7秒前
稚气满满发布了新的文献求助10
8秒前
搜集达人应助wby0313采纳,获得10
8秒前
squirrelcone完成签到 ,获得积分10
8秒前
坚强的严青应助朴次次采纳,获得100
9秒前
魑魅魍魉发布了新的文献求助10
9秒前
10秒前
feizhuliu发布了新的文献求助10
10秒前
默默的爆米花完成签到,获得积分10
10秒前
11秒前
MZY完成签到,获得积分10
13秒前
13秒前
13秒前
大大怪完成签到 ,获得积分10
14秒前
lll完成签到 ,获得积分20
15秒前
Binniwell完成签到,获得积分20
16秒前
木木发布了新的文献求助10
16秒前
16秒前
16秒前
doctorshg完成签到,获得积分10
17秒前
17秒前
修仙应助Atari采纳,获得10
18秒前
19秒前
19秒前
ChaiN发布了新的文献求助10
20秒前
21秒前
hana完成签到 ,获得积分10
22秒前
Hellowa发布了新的文献求助10
22秒前
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161332
求助须知:如何正确求助?哪些是违规求助? 2812743
关于积分的说明 7896558
捐赠科研通 2471616
什么是DOI,文献DOI怎么找? 1316066
科研通“疑难数据库(出版商)”最低求助积分说明 631106
版权声明 602112