Engineering nanoporous and solid core-shell architectures of low-platinum alloy catalysts for high power density PEM fuel cells

纳米孔 质子交换膜燃料电池 材料科学 电催化剂 催化作用 化学工程 纳米技术 电流密度 铂金 功率密度 电极 化学 电化学 物理化学 生物化学 物理 功率(物理) 量子力学 工程类
作者
Yongqiang Kang,Jiaqi Wang,Yinping Wei,Yongle Wu,Dongsheng Xia,Lin Gan
出处
期刊:Nano Research [Springer Science+Business Media]
卷期号:15 (7): 6148-6155 被引量:36
标识
DOI:10.1007/s12274-022-4238-1
摘要

Low-platinum (Pt) alloy catalysts hold promising application in oxygen reduction reaction (ORR) electrocatalysis of proton-exchange-membrane fuel cells (PEMFCs). Although significant progress has been made to boost the kinetic ORR mass activity at low current densities in liquid half-cells, little attention was paid to the performance of Pt-based catalysts in realistic PEMFCs particularly at high current densities for high power density, which remains poorly understood. In this paper, we show that, regardless of the kinetic mass activity at the low current density region, the high current density performance of the low-Pt alloy catalysts is dominantly controlled by the total Pt surface area, particularly in low-Pt-loading H2-air PEMFCs. To this end, we propose two different strategies to boost the specific Pt surface area, the post-15-nm dealloyed nanoporous architecture and the sub-5-nm solid core-shell nanoparticles (NPs) through fluidic-bed synthesis, both of which bring in comparably high mass activity and high Pt surface area for large-current-density performance. At medium current density, the dealloyed porous NPs provide substantially higher H2-air PEMFC performance compared to solid core-shell catalysts, despite their similar mass activity in liquid half-cells. Scanning transmission electron microscopy images combined with electron energy loss spectroscopic imaging evidence a previously unreported “semi-immersed nanoporous-Pt/ionomer” structure in contrast to a “fully-immersed core-shell-Pt/ionomer” structure, thus favoring O2 transport and improving the fuel cell performance. Our results provide new insights into the role of Pt nanostructures in concurrently optimizing the mass activity, Pt surface area and Pt/Nafion interface for high power density fuel cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
啊啊啊啊完成签到,获得积分20
2秒前
2秒前
3秒前
3秒前
四叶草发布了新的文献求助10
4秒前
轻松的忆雪完成签到,获得积分10
4秒前
夜雨清痕y发布了新的文献求助10
4秒前
5秒前
顺心梦山完成签到,获得积分10
5秒前
LYY完成签到 ,获得积分10
7秒前
孙玉航发布了新的文献求助10
7秒前
7秒前
tuanheqi应助科研通管家采纳,获得100
8秒前
爱笑的汽车完成签到 ,获得积分10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
学术大拿发布了新的文献求助10
8秒前
8秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
yty完成签到,获得积分10
9秒前
9秒前
Orange应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
Rainsky完成签到,获得积分10
9秒前
所所应助科研通管家采纳,获得10
9秒前
lydiaabc发布了新的文献求助10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
tuanheqi应助科研通管家采纳,获得100
9秒前
Hello应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
科目三应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924605
求助须知:如何正确求助?哪些是违规求助? 4194681
关于积分的说明 13029309
捐赠科研通 3966484
什么是DOI,文献DOI怎么找? 2173998
邀请新用户注册赠送积分活动 1191530
关于科研通互助平台的介绍 1101034