Study on the Correlation Between the Appearance Traits and Intrinsic Chemical Quality of Bitter Almonds Based on Fingerprint-Chemometrics

杏仁苷 化学计量学 化学 偏最小二乘回归 主成分分析 指纹(计算) 色谱法 线性判别分析 食品科学 人工智能 统计 数学 计算机科学 医学 病理 替代医学
作者
Zhang Guo-qin,Huanhuan Li,Lili Sun,Yi Liu,Ying Cao,Xiaoliang Ren,Yanan Liu
出处
期刊:Journal of Chromatographic Science [Oxford University Press]
卷期号:61 (2): 110-118 被引量:5
标识
DOI:10.1093/chromsci/bmac026
摘要

Bitter almond is a well-known and commonly used traditional Chinese medicine (TCM) for relieving coughs and asthma. However, the bioactive chemical composition of bitter almonds, especially their amygdalin content, which determines their quality for TCM use, is variable and this can cause problems with formulating and prescribing TCMs based on bitter almonds. Therefore, a simple method was developed to evaluate the compositional quality of bitter almonds from their appearance traits, based on a combination of chromatographic fingerprinting and chemometrics. Bitter almonds were analyzed by high-performance liquid chromatography (HPLC). Hierarchical cluster analysis (HCA) and principal components analysis (PCA) were applied to classify bitter almonds, which split the samples into two independent clusters. Three chemical markers (amygdalin, prunasin, and one unidentified component) were found by partial least squares-discriminant analysis (PLS-DA). What's more, a new PLS-DA model was reconstructed to confirm the obtained chemical markers from PLS-DA. Additionally, the appearance trait indices and amygdalin content of bitter almond were determined and the classification was confirmed by one-way analysis of variance. This method can easily determine the quality of bitter almonds from their appearance alone, high quality correlated closely with kernels that were larger, oblong in shape and heavier.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Megan发布了新的文献求助10
刚刚
1秒前
小番茄yuyu完成签到,获得积分20
2秒前
2秒前
3秒前
3秒前
3秒前
向太阳奔跑hx完成签到,获得积分10
3秒前
ly发布了新的文献求助10
3秒前
rcrc应助wyy采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
飞飞发布了新的文献求助10
5秒前
6秒前
完美世界应助卖萌的秋田采纳,获得10
6秒前
沉舟完成签到,获得积分10
6秒前
中央戏精学院完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
MOMOTG发布了新的文献求助10
8秒前
8秒前
深情安青应助王慧颖采纳,获得10
8秒前
8秒前
qwe完成签到,获得积分10
8秒前
小番茄yuyu发布了新的文献求助10
8秒前
wonder发布了新的文献求助10
9秒前
9秒前
Charon发布了新的文献求助10
9秒前
9秒前
zhanghan发布了新的文献求助10
9秒前
小黎发布了新的文献求助10
9秒前
9秒前
10秒前
77发布了新的文献求助10
10秒前
赘婿应助爱搬玉米采纳,获得10
10秒前
带头大哥应助拼搏的黑夜采纳,获得10
11秒前
12秒前
Megan完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760390
求助须知:如何正确求助?哪些是违规求助? 5524729
关于积分的说明 15397532
捐赠科研通 4897330
什么是DOI,文献DOI怎么找? 2634099
邀请新用户注册赠送积分活动 1582136
关于科研通互助平台的介绍 1537609