Study on the Correlation Between the Appearance Traits and Intrinsic Chemical Quality of Bitter Almonds Based on Fingerprint-Chemometrics

杏仁苷 化学计量学 化学 偏最小二乘回归 主成分分析 指纹(计算) 色谱法 线性判别分析 食品科学 人工智能 统计 数学 计算机科学 医学 病理 替代医学
作者
Zhang Guo-qin,Huanhuan Li,Lili Sun,Yi Liu,Ying Cao,Xiaoliang Ren,Yanan Liu
出处
期刊:Journal of Chromatographic Science [Oxford University Press]
卷期号:61 (2): 110-118 被引量:5
标识
DOI:10.1093/chromsci/bmac026
摘要

Bitter almond is a well-known and commonly used traditional Chinese medicine (TCM) for relieving coughs and asthma. However, the bioactive chemical composition of bitter almonds, especially their amygdalin content, which determines their quality for TCM use, is variable and this can cause problems with formulating and prescribing TCMs based on bitter almonds. Therefore, a simple method was developed to evaluate the compositional quality of bitter almonds from their appearance traits, based on a combination of chromatographic fingerprinting and chemometrics. Bitter almonds were analyzed by high-performance liquid chromatography (HPLC). Hierarchical cluster analysis (HCA) and principal components analysis (PCA) were applied to classify bitter almonds, which split the samples into two independent clusters. Three chemical markers (amygdalin, prunasin, and one unidentified component) were found by partial least squares-discriminant analysis (PLS-DA). What's more, a new PLS-DA model was reconstructed to confirm the obtained chemical markers from PLS-DA. Additionally, the appearance trait indices and amygdalin content of bitter almond were determined and the classification was confirmed by one-way analysis of variance. This method can easily determine the quality of bitter almonds from their appearance alone, high quality correlated closely with kernels that were larger, oblong in shape and heavier.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧瑟处完成签到,获得积分10
1秒前
1秒前
luo完成签到 ,获得积分10
2秒前
隐形曼青应助刚睡醒采纳,获得10
2秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
王涵秋发布了新的文献求助10
6秒前
YaoZhang完成签到 ,获得积分10
8秒前
luis应助怕黑的蚂蚁采纳,获得10
8秒前
从容的水壶完成签到,获得积分10
8秒前
fan关闭了fan文献求助
9秒前
Yuan发布了新的文献求助10
11秒前
JimmyY发布了新的文献求助20
11秒前
JimmyY发布了新的文献求助30
11秒前
JimmyY发布了新的文献求助10
11秒前
wsq完成签到 ,获得积分10
12秒前
慕青应助su采纳,获得10
14秒前
加减法完成签到 ,获得积分10
14秒前
忧郁难胜完成签到,获得积分10
16秒前
ttt完成签到,获得积分10
17秒前
李爱国应助王涵秋采纳,获得10
17秒前
Icarus完成签到 ,获得积分10
19秒前
19秒前
Orange应助曹杨磊采纳,获得10
20秒前
追寻惜萱完成签到 ,获得积分10
21秒前
22秒前
白日焰火发布了新的文献求助10
23秒前
23秒前
23秒前
开口笑发布了新的文献求助10
24秒前
26秒前
cjjwei完成签到 ,获得积分10
26秒前
sjw完成签到,获得积分20
26秒前
俭朴灵竹发布了新的文献求助10
27秒前
27秒前
27秒前
曾经绮南完成签到 ,获得积分20
28秒前
Icarus发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600606
求助须知:如何正确求助?哪些是违规求助? 4686243
关于积分的说明 14842399
捐赠科研通 4677148
什么是DOI,文献DOI怎么找? 2538898
邀请新用户注册赠送积分活动 1505830
关于科研通互助平台的介绍 1471201