计算机科学
卷积神经网络
Softmax函数
人工智能
特征选择
入侵检测系统
模式识别(心理学)
联营
随机森林
特征(语言学)
数据挖掘
假警报
机器学习
哲学
语言学
作者
Bo Cao,Chenghai Li,Yafei Song,Xiaoshi Fan
摘要
To solve the problem of low accuracy and high false-alarm rate of existing intrusion detection models for multiple classifications of intrusion behaviors, a network intrusion detection model incorporating convolutional neural network and bidirectional gated recurrent unit is proposed. To solve the problems of many dimensions of features and imbalance of positive and negative samples in the original traffic data, sampling processing is performed with the help of a hybrid sampling algorithm combining ADASYN and RENN, and feature selection is performed by combining random forest algorithm and Pearson correlation analysis; after that, spatial features are extracted by the convolutional neural network, and further features are extracted by incorporating average pooling and max pooling, and then BiGRU is used to extracts long-distance dependent information features to achieve comprehensive and effective feature learning. Finally, the Softmax function is used for classification. In this paper, the proposed model is evaluated on the UNSW_NB15, NSL-KDD, and CIC-IDS2017 data sets with an accuracy of 85.55%, 99.81%, and 99.70%, which is 1.25%, 0.59%, and 0.27% better than the same type model of CNN-GRU.
科研通智能强力驱动
Strongly Powered by AbleSci AI