医学
恶性肿瘤
接收机工作特性
弹性成像
超声波
乳腺癌
逻辑回归
核医学
放射科
病理
癌症
内科学
作者
Yayun Cui,Na He,Xian-Jun Ye,Lei Hu,Li Xie,Wen Zhong,Chaoxue Zhang
标识
DOI:10.1016/j.ultrasmedbio.2022.04.219
摘要
The aim of the study described here was to assess the evaluation of tissue stiffness around lesions by sound touch shear wave elastography (STE) in breast malignancy diagnosis. This was an institutional ethics committee-approved, single-center study. A total of 90 women with breast masses examined with conventional ultrasound and STE were eligible for enrollment from December 2020 to July 2021. The maximum and mean elastic values of masses, Emax and Emean, were determined. Shell function was used to measure the maximum and mean elastic values of tissues around masses in annular shells 0.5, 1.0, 1.5 and 2.0 mm wide, recorded as corresponding Emax-shell and Emean-shell. All parameters were analyzed and compared with histopathologic results. Receiver operating characteristic curves were constructed to assess diagnostic performance. Logistic regression analysis was conducted to determine the best diagnostic model. Collagen fiber content of tissues around breast lesions was evaluated using Masson staining and ImageJ software. Ninety women with breast masses were included in this study; 50 had benign (mean diameter 15.84 ± 4.39 mm) and 40 had malignant (mean diameter 17.40 ± 5.42 mm) masses. The diagnostic value of Emax-shell-2.0 was the highest (area under the curve = 0.930) with a sensitivity of 87.5% and specificity of 88%. According to stepwise logistic regression analysis, Emax-shell-2.0 and age were independent predictors of malignancy. Emax-shell-2.0 was also found to be highly correlated with the collagen fiber content of tissue in the malignant group (r = 0.877). Tissue stiffness around lesions measured by STE is a useful metric in identifying malignant breast masses by reflecting collagen fiber content, and Emax-shell-2.0 performs best.
科研通智能强力驱动
Strongly Powered by AbleSci AI