Learning biophysical determinants of cell fate with deep neural networks

计算机科学 人工智能 人工神经网络 神经科学 生物
作者
Christopher J. Soelistyo,Giulia Vallardi,Guillaume Charras,Alan R. Lowe
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (7): 636-644 被引量:33
标识
DOI:10.1038/s42256-022-00503-6
摘要

Deep learning is now a powerful tool in microscopy data analysis, and is routinely used for image processing applications such as segmentation and denoising. However, it has rarely been used to directly learn mechanistic models of a biological system, owing to the complexity of the internal representations. Here, we develop an end-to-end machine learning approach capable of learning an explainable model of a complex biological phenomenon, cell competition, directly from a large corpus of time-lapse microscopy data. Cell competition is a quality control mechanism that eliminates unfit cells from a tissue, during which cell fate is thought to be determined by the local cellular neighbourhood over time. To investigate this, we developed a new approach (τ-VAE) by coupling a probabilistic encoder to a temporal convolution network to predict the fate of each cell in an epithelium. Using the τ-VAE’s latent representation of the local tissue organization and the flow of information in the network, we decode the physical parameters responsible for correct prediction of fate in cell competition. Remarkably, the model autonomously learns that cell density is the single most important factor in predicting cell fate—a conclusion that is in agreement with our current understanding from over a decade of scientific research. Finally, to test the learned internal representation, we challenge the network with experiments performed in the presence of drugs that block signalling pathways involved in competition. We present a novel discriminator network, which using the predictions of the τ-VAE can identify conditions that deviate from the normal behaviour, paving the way for automated, mechanism-aware drug screening. An end-to-end machine learning approach that can learn which mechanisms determine cell fate and competition from a large time-lapse microscopy dataset is developed. The approach makes use of a probabilistic autoencoder to learn an interpretable representation of the organization of cells, and provides cell fate predictions that can be tested in drug screening experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaochaoge完成签到,获得积分20
1秒前
小皮皮她爹完成签到,获得积分20
2秒前
杜杜完成签到,获得积分10
2秒前
纯真小伙发布了新的文献求助10
2秒前
淳于惜雪完成签到 ,获得积分10
2秒前
May发布了新的文献求助10
3秒前
3秒前
杨明智完成签到 ,获得积分10
4秒前
Doctor发布了新的文献求助10
5秒前
6秒前
7秒前
朴实以松完成签到,获得积分10
7秒前
DJL发布了新的文献求助10
9秒前
Jeamren完成签到,获得积分10
9秒前
10秒前
研友_ZlPVzZ发布了新的文献求助10
10秒前
情怀应助小城故事和冰雨采纳,获得10
12秒前
鱿鱼炒黄瓜完成签到,获得积分20
12秒前
卡卡光波完成签到,获得积分10
15秒前
纯真小伙发布了新的文献求助10
15秒前
ralph_liu完成签到,获得积分10
16秒前
wddytc发布了新的文献求助30
16秒前
18秒前
19秒前
高挑的果汁完成签到,获得积分10
22秒前
23秒前
23秒前
23秒前
郭郭郭完成签到,获得积分10
24秒前
wutianbao完成签到,获得积分20
25秒前
刘轶阳完成签到,获得积分20
26秒前
27秒前
May发布了新的文献求助10
27秒前
left_right完成签到,获得积分10
27秒前
奶糖爱果冻完成签到 ,获得积分10
28秒前
28秒前
科研通AI5应助shanyuyulai采纳,获得50
28秒前
HKH_whut发布了新的文献求助10
29秒前
29秒前
科研通AI6应助常大美女采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5024110
求助须知:如何正确求助?哪些是违规求助? 4261278
关于积分的说明 13281028
捐赠科研通 4068104
什么是DOI,文献DOI怎么找? 2225210
邀请新用户注册赠送积分活动 1233946
关于科研通互助平台的介绍 1157899