Learning biophysical determinants of cell fate with deep neural networks

计算机科学 人工智能 人工神经网络 神经科学 生物
作者
Christopher J. Soelistyo,Giulia Vallardi,Guillaume Charras,Alan R. Lowe
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (7): 636-644 被引量:41
标识
DOI:10.1038/s42256-022-00503-6
摘要

Deep learning is now a powerful tool in microscopy data analysis, and is routinely used for image processing applications such as segmentation and denoising. However, it has rarely been used to directly learn mechanistic models of a biological system, owing to the complexity of the internal representations. Here, we develop an end-to-end machine learning approach capable of learning an explainable model of a complex biological phenomenon, cell competition, directly from a large corpus of time-lapse microscopy data. Cell competition is a quality control mechanism that eliminates unfit cells from a tissue, during which cell fate is thought to be determined by the local cellular neighbourhood over time. To investigate this, we developed a new approach (τ-VAE) by coupling a probabilistic encoder to a temporal convolution network to predict the fate of each cell in an epithelium. Using the τ-VAE’s latent representation of the local tissue organization and the flow of information in the network, we decode the physical parameters responsible for correct prediction of fate in cell competition. Remarkably, the model autonomously learns that cell density is the single most important factor in predicting cell fate—a conclusion that is in agreement with our current understanding from over a decade of scientific research. Finally, to test the learned internal representation, we challenge the network with experiments performed in the presence of drugs that block signalling pathways involved in competition. We present a novel discriminator network, which using the predictions of the τ-VAE can identify conditions that deviate from the normal behaviour, paving the way for automated, mechanism-aware drug screening. An end-to-end machine learning approach that can learn which mechanisms determine cell fate and competition from a large time-lapse microscopy dataset is developed. The approach makes use of a probabilistic autoencoder to learn an interpretable representation of the organization of cells, and provides cell fate predictions that can be tested in drug screening experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助Ywr采纳,获得10
刚刚
炝拌维C完成签到,获得积分10
4秒前
赘婿应助LihuaLu0417采纳,获得10
7秒前
友好的大米完成签到,获得积分10
7秒前
8秒前
xiayil完成签到 ,获得积分10
9秒前
orixero应助Lucky小M采纳,获得10
9秒前
晨曦呢完成签到 ,获得积分10
10秒前
解惑大师完成签到 ,获得积分10
11秒前
清璃完成签到 ,获得积分10
12秒前
zty完成签到 ,获得积分10
13秒前
13秒前
rowena完成签到,获得积分10
13秒前
LihuaLu0417完成签到,获得积分10
14秒前
14秒前
zybbb完成签到 ,获得积分10
15秒前
清沧炽魂完成签到,获得积分10
17秒前
17秒前
传奇3应助舒适的鹤轩采纳,获得10
17秒前
Orange应助YIFCCC采纳,获得10
17秒前
浮游应助研友_nPol2L采纳,获得10
18秒前
小Z发布了新的文献求助10
18秒前
轻松雨旋完成签到 ,获得积分10
18秒前
HAL9000发布了新的文献求助10
18秒前
18秒前
一一完成签到 ,获得积分20
19秒前
廿陆完成签到 ,获得积分10
21秒前
Lucky小M发布了新的文献求助20
23秒前
小洪俊熙发布了新的文献求助10
23秒前
等待青文发布了新的文献求助10
24秒前
灵巧乐松完成签到 ,获得积分10
24秒前
charint应助清沧炽魂采纳,获得10
24秒前
量子星尘发布了新的文献求助10
25秒前
希望天下0贩的0应助zyy621采纳,获得100
25秒前
26秒前
28秒前
仇豪杰应助熊熊采纳,获得10
28秒前
29秒前
范白容完成签到 ,获得积分0
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539445
求助须知:如何正确求助?哪些是违规求助? 4626139
关于积分的说明 14598149
捐赠科研通 4567059
什么是DOI,文献DOI怎么找? 2503755
邀请新用户注册赠送积分活动 1481606
关于科研通互助平台的介绍 1453214