Learning biophysical determinants of cell fate with deep neural networks

计算机科学 人工智能 深度学习 多细胞生物 细胞命运测定 鉴别器 代表(政治) 机器学习 细胞 生物 转录因子 政治 探测器 基因 电信 生物化学 遗传学 法学 政治学
作者
Christopher J. Soelistyo,Giulia Vallardi,Guillaume Charras,Alan R. Lowe
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (7): 636-644 被引量:27
标识
DOI:10.1038/s42256-022-00503-6
摘要

Deep learning is now a powerful tool in microscopy data analysis, and is routinely used for image processing applications such as segmentation and denoising. However, it has rarely been used to directly learn mechanistic models of a biological system, owing to the complexity of the internal representations. Here, we develop an end-to-end machine learning approach capable of learning an explainable model of a complex biological phenomenon, cell competition, directly from a large corpus of time-lapse microscopy data. Cell competition is a quality control mechanism that eliminates unfit cells from a tissue, during which cell fate is thought to be determined by the local cellular neighbourhood over time. To investigate this, we developed a new approach (τ-VAE) by coupling a probabilistic encoder to a temporal convolution network to predict the fate of each cell in an epithelium. Using the τ-VAE’s latent representation of the local tissue organization and the flow of information in the network, we decode the physical parameters responsible for correct prediction of fate in cell competition. Remarkably, the model autonomously learns that cell density is the single most important factor in predicting cell fate—a conclusion that is in agreement with our current understanding from over a decade of scientific research. Finally, to test the learned internal representation, we challenge the network with experiments performed in the presence of drugs that block signalling pathways involved in competition. We present a novel discriminator network, which using the predictions of the τ-VAE can identify conditions that deviate from the normal behaviour, paving the way for automated, mechanism-aware drug screening. An end-to-end machine learning approach that can learn which mechanisms determine cell fate and competition from a large time-lapse microscopy dataset is developed. The approach makes use of a probabilistic autoencoder to learn an interpretable representation of the organization of cells, and provides cell fate predictions that can be tested in drug screening experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
核桃发布了新的文献求助10
刚刚
1秒前
在水一方应助TINA采纳,获得10
1秒前
wmszhd完成签到,获得积分10
2秒前
Gilana发布了新的文献求助10
2秒前
2秒前
FashionBoy应助Yanz采纳,获得10
3秒前
小蘑菇应助WL露儿采纳,获得10
3秒前
zn315315发布了新的文献求助10
3秒前
陈陈发布了新的文献求助10
3秒前
valentin完成签到,获得积分10
3秒前
思维隋发布了新的文献求助10
4秒前
导不帮俺找俺莫法子嘞关注了科研通微信公众号
4秒前
FashionBoy应助回鱼采纳,获得10
4秒前
4秒前
samuel发布了新的文献求助10
4秒前
大个应助yyye采纳,获得20
5秒前
5秒前
科目三应助加油冲冲冲采纳,获得10
5秒前
思源应助李芬采纳,获得10
5秒前
kkm发布了新的文献求助10
6秒前
6秒前
xiaohong发布了新的文献求助10
7秒前
研友_VZG7GZ应助王哪儿跑0_0采纳,获得10
8秒前
8秒前
8秒前
9秒前
健康的海发布了新的文献求助10
11秒前
Lee发布了新的文献求助10
12秒前
12秒前
任性铅笔发布了新的文献求助10
12秒前
变式拓展完成签到,获得积分10
12秒前
jjhh发布了新的文献求助10
12秒前
12秒前
壮观的可以完成签到,获得积分10
14秒前
alpv完成签到,获得积分10
15秒前
SUN发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126