亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning biophysical determinants of cell fate with deep neural networks

计算机科学 人工智能 深度学习 多细胞生物 细胞命运测定 鉴别器 代表(政治) 机器学习 细胞 生物 转录因子 政治 探测器 基因 电信 生物化学 遗传学 法学 政治学
作者
Christopher J. Soelistyo,Giulia Vallardi,Guillaume Charras,Alan R. Lowe
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (7): 636-644 被引量:27
标识
DOI:10.1038/s42256-022-00503-6
摘要

Deep learning is now a powerful tool in microscopy data analysis, and is routinely used for image processing applications such as segmentation and denoising. However, it has rarely been used to directly learn mechanistic models of a biological system, owing to the complexity of the internal representations. Here, we develop an end-to-end machine learning approach capable of learning an explainable model of a complex biological phenomenon, cell competition, directly from a large corpus of time-lapse microscopy data. Cell competition is a quality control mechanism that eliminates unfit cells from a tissue, during which cell fate is thought to be determined by the local cellular neighbourhood over time. To investigate this, we developed a new approach (τ-VAE) by coupling a probabilistic encoder to a temporal convolution network to predict the fate of each cell in an epithelium. Using the τ-VAE’s latent representation of the local tissue organization and the flow of information in the network, we decode the physical parameters responsible for correct prediction of fate in cell competition. Remarkably, the model autonomously learns that cell density is the single most important factor in predicting cell fate—a conclusion that is in agreement with our current understanding from over a decade of scientific research. Finally, to test the learned internal representation, we challenge the network with experiments performed in the presence of drugs that block signalling pathways involved in competition. We present a novel discriminator network, which using the predictions of the τ-VAE can identify conditions that deviate from the normal behaviour, paving the way for automated, mechanism-aware drug screening. An end-to-end machine learning approach that can learn which mechanisms determine cell fate and competition from a large time-lapse microscopy dataset is developed. The approach makes use of a probabilistic autoencoder to learn an interpretable representation of the organization of cells, and provides cell fate predictions that can be tested in drug screening experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿治完成签到 ,获得积分10
1秒前
8秒前
11秒前
酷波er应助leonzhou采纳,获得10
11秒前
开霁完成签到,获得积分10
15秒前
su发布了新的文献求助10
16秒前
研友_VZG7GZ应助123采纳,获得10
18秒前
24秒前
28秒前
义气的元柏完成签到 ,获得积分10
30秒前
猫先生发布了新的文献求助10
31秒前
cris完成签到 ,获得积分10
33秒前
35秒前
cris关注了科研通微信公众号
36秒前
su完成签到,获得积分10
36秒前
Tim完成签到 ,获得积分10
38秒前
猫先生完成签到,获得积分10
40秒前
40秒前
zzcc发布了新的文献求助10
41秒前
程风破浪发布了新的文献求助10
42秒前
是我不得开心妍完成签到 ,获得积分10
42秒前
43秒前
123发布了新的文献求助10
47秒前
尼古丁的味道完成签到 ,获得积分10
54秒前
程风破浪完成签到,获得积分10
1分钟前
zzcc完成签到,获得积分10
1分钟前
科研通AI2S应助谦让冰真采纳,获得10
1分钟前
stay完成签到,获得积分20
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
stay发布了新的文献求助10
1分钟前
柳行天完成签到 ,获得积分10
1分钟前
高山七石发布了新的文献求助10
1分钟前
minya发布了新的文献求助30
1分钟前
希望天下0贩的0应助biubiu26采纳,获得30
1分钟前
路边完成签到 ,获得积分10
1分钟前
bkagyin应助热忱采纳,获得10
1分钟前
光亮的自行车完成签到 ,获得积分10
1分钟前
1分钟前
橘子汽水发布了新的文献求助10
1分钟前
biubiu26发布了新的文献求助30
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162265
求助须知:如何正确求助?哪些是违规求助? 2813284
关于积分的说明 7899578
捐赠科研通 2472567
什么是DOI,文献DOI怎么找? 1316446
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142