Learning biophysical determinants of cell fate with deep neural networks

计算机科学 人工智能 人工神经网络 神经科学 生物
作者
Christopher J. Soelistyo,Giulia Vallardi,Guillaume Charras,Alan R. Lowe
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (7): 636-644 被引量:41
标识
DOI:10.1038/s42256-022-00503-6
摘要

Deep learning is now a powerful tool in microscopy data analysis, and is routinely used for image processing applications such as segmentation and denoising. However, it has rarely been used to directly learn mechanistic models of a biological system, owing to the complexity of the internal representations. Here, we develop an end-to-end machine learning approach capable of learning an explainable model of a complex biological phenomenon, cell competition, directly from a large corpus of time-lapse microscopy data. Cell competition is a quality control mechanism that eliminates unfit cells from a tissue, during which cell fate is thought to be determined by the local cellular neighbourhood over time. To investigate this, we developed a new approach (τ-VAE) by coupling a probabilistic encoder to a temporal convolution network to predict the fate of each cell in an epithelium. Using the τ-VAE’s latent representation of the local tissue organization and the flow of information in the network, we decode the physical parameters responsible for correct prediction of fate in cell competition. Remarkably, the model autonomously learns that cell density is the single most important factor in predicting cell fate—a conclusion that is in agreement with our current understanding from over a decade of scientific research. Finally, to test the learned internal representation, we challenge the network with experiments performed in the presence of drugs that block signalling pathways involved in competition. We present a novel discriminator network, which using the predictions of the τ-VAE can identify conditions that deviate from the normal behaviour, paving the way for automated, mechanism-aware drug screening. An end-to-end machine learning approach that can learn which mechanisms determine cell fate and competition from a large time-lapse microscopy dataset is developed. The approach makes use of a probabilistic autoencoder to learn an interpretable representation of the organization of cells, and provides cell fate predictions that can be tested in drug screening experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dskelf完成签到,获得积分10
刚刚
鲤鱼遥完成签到,获得积分10
刚刚
1秒前
打打应助结实大雁采纳,获得20
1秒前
1秒前
无忧发布了新的文献求助10
2秒前
李爱国应助ajjdnd采纳,获得10
2秒前
3秒前
面壁思过发布了新的文献求助10
5秒前
bkagyin应助拣尽南枝采纳,获得10
5秒前
yuC发布了新的文献求助30
6秒前
6秒前
hhhh完成签到,获得积分10
6秒前
Logan发布了新的文献求助10
7秒前
7秒前
tranphucthinh发布了新的文献求助10
8秒前
自由梦槐完成签到,获得积分10
9秒前
11秒前
科研通AI6应助开心的觅山采纳,获得20
11秒前
完美世界应助好好学习采纳,获得10
12秒前
14秒前
15秒前
大个应助superman采纳,获得10
15秒前
佳佳完成签到,获得积分10
15秒前
炒米完成签到,获得积分10
16秒前
pepsi发布了新的文献求助10
16秒前
16秒前
小蘑菇应助研友_Z7Xdl8采纳,获得10
16秒前
17秒前
18秒前
微笑谷雪发布了新的文献求助10
18秒前
19秒前
熊猫发布了新的文献求助10
19秒前
温芳奇发布了新的文献求助10
19秒前
冷酷的松思完成签到,获得积分10
20秒前
ajjdnd发布了新的文献求助10
20秒前
汉堡包应助Daisylee采纳,获得10
21秒前
冬日暖阳完成签到,获得积分10
22秒前
23秒前
充电宝应助无感慢热采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995