异质结
材料科学
Atom(片上系统)
电荷(物理)
密度泛函理论
光电子学
拓扑(电路)
纳米技术
计算化学
化学
物理
电气工程
计算机科学
量子力学
工程类
嵌入式系统
作者
Lingyan Zhao,Bixia Yang,Guoxin Zhuang,Yonglin Wen,Tingshi Zhang,Mingxiong Lin,Zanyong Zhuang,Yan Yu
出处
期刊:Small
[Wiley]
日期:2022-06-15
卷期号:18 (28)
被引量:32
标识
DOI:10.1002/smll.202201668
摘要
Exploitation of atomic-level principles to optimize the charge transfer on ultrathin 2D heterostructures is an emerging frontier in relieving the energy and environmental crisis. Herein, a facile "topological-atom-extraction" protocol is disclosed, i.e., selective extraction of Zn from ultrathin half-unit-cell ZnIn2 S4 (HZIS) can embed thin In2 O3 domain into 1.60 nm thick HZIS layer to create an atomically thin in-plane In2 O3 /HZIS heterostructure. Thanks to the optimal distance and capability of charge separation, the in-plane In2 O3 /HZIS heterostructure is among the best ZnIn2 S4 -based CO2 reduction reaction (CRR) photocatalysts, and indeed demonstrates a significant increase (from 6.8- to 128-fold) in CO production rate compared with those of out-plane ZIS@In2 O3 and out-plane In2 O3 -HZIScalcined heterostructures. Density Functional Theory simulation reveals that whereas the out-plane heterostructure has a much smaller ∆q of 0.2-0.25 e, the in-plane heterostructure with "zero distance contact" has an optimal ∆q of 1.05 e between In2 O3 and HZIS that induces remarkable charge redistribution on the in-plane heterojunction interface and creates local electric field confined within the ultrathin layer. The charge redistribution efficiently directs the charge-carrier separation in S-scheme photocatalytic system and endows long-lifetime carrier to CRR active HZIS. The findings demonstrate the strong versatility of engineering atomic-level heterojunctions for efficient catalysts design.
科研通智能强力驱动
Strongly Powered by AbleSci AI