化学
氧化还原
电化学
水溶液
电解质
电子转移
分解
支撑电解质
组合化学
无机化学
光化学
有机化学
电极
物理化学
作者
Yan Jing,Evan Wenbo Zhao,Marc‐Antoni Goulet,Meisam Bahari,Eric M. Fell,Shijian Jin,Ali Davoodi,Erlendur Jónsson,Min Wu,Clare P. Grey,Roy G. Gordon,Michael J. Aziz
出处
期刊:Nature Chemistry
[Springer Nature]
日期:2022-06-16
卷期号:14 (10): 1103-1109
被引量:75
标识
DOI:10.1038/s41557-022-00967-4
摘要
Aqueous organic redox flow batteries offer a safe and potentially inexpensive solution to the problem of storing massive amounts of electricity produced from intermittent renewables. However, molecular decomposition represents a major barrier to commercialization-and although structural modifications can improve stability, it comes at the expense of synthetic cost and molecular weight. Now, utilizing 2,6-dihydroxy-anthraquinone (DHAQ) without further structural modification, we demonstrate that the regeneration of the original molecule after decomposition represents a viable route to achieve low-cost, long-lifetime aqueous organic redox flow batteries. We used in situ (online) NMR and electron paramagnetic resonance, and complementary electrochemical analyses to show that the decomposition compound 2,6-dihydroxy-anthrone (DHA) and its tautomer, 2,6-dihydroxy-anthranol (DHAL) can be recomposed to DHAQ electrochemically through two steps: oxidation of DHA(L)2- to the dimer (DHA)24- by one-electron transfer followed by oxidation of (DHA)24- to DHAQ2- by three-electron transfer per DHAQ molecule. This electrochemical regeneration process also rejuvenates the positive electrolyte-rebalancing the states of charge of both electrolytes without introducing extra ions.
科研通智能强力驱动
Strongly Powered by AbleSci AI