Closing the loop for patients with Parkinson disease: where are we?

左旋多巴 医学 帕金森病 可穿戴计算机 疾病 物理医学与康复 加药 重症监护医学 计算机科学 药理学 内科学 嵌入式系统
作者
Hazhir Teymourian,Farshad Tehrani,Katherine Longardner,Kuldeep Mahato,Tatiana Podhajny,Jong‐Min Moon,K. Yugender Goud,Juliane R. Sempionatto,Irene Litvan,Joseph Wang
出处
期刊:Nature Reviews Neurology [Springer Nature]
卷期号:18 (8): 497-507 被引量:32
标识
DOI:10.1038/s41582-022-00674-1
摘要

Although levodopa remains the most efficacious symptomatic therapy for Parkinson disease (PD), management of levodopa treatment during the advanced stages of the disease is extremely challenging. This difficulty is a result of levodopa's short half-life, a progressive narrowing of the therapeutic window, and major inter-patient and intra-patient variations in the dose-response relationship. Therefore, a suitable alternative to repeated oral administration of levodopa is being sought. Recent research efforts have focused on the development of novel levodopa delivery strategies and wearable physical sensors that track symptoms and disease progression. However, the need for methods to monitor the levels of levodopa present in the body in real time has been overlooked. Advances in chemical sensor technology mean that the development of wearable and mobile biosensors for continuous or frequent levodopa measurements is now possible. Such levodopa monitoring could help to deliver personalized and timely medication dosing to alleviate treatment-related fluctuations in the symptoms of PD. Therefore, with the aim of optimizing therapeutic management of PD and improving the quality of life of patients, we share our vision of a future closed-loop autonomous wearable 'sense-and-act' system. This system consists of a network of physical and chemical sensors coupled with a levodopa delivery device and is guided by effective big data fusion algorithms and machine learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CC完成签到,获得积分10
1秒前
lvzhigang完成签到 ,获得积分10
3秒前
香蕉觅云应助QY11采纳,获得10
4秒前
4秒前
学术蝗虫发布了新的文献求助10
5秒前
5秒前
西西弗完成签到 ,获得积分10
6秒前
6秒前
CipherSage应助科研通管家采纳,获得10
8秒前
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得30
9秒前
田様应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
科研通AI2S应助hqq2312采纳,获得10
9秒前
123~!发布了新的文献求助30
10秒前
木子发布了新的文献求助10
12秒前
李爱国应助学术蝗虫采纳,获得10
13秒前
John完成签到 ,获得积分10
14秒前
abc完成签到,获得积分10
15秒前
16秒前
16秒前
大渣饼完成签到 ,获得积分10
16秒前
17秒前
潘世林完成签到,获得积分10
17秒前
19秒前
Hello应助啊哈哈哈采纳,获得10
19秒前
高兴的蜻蜓完成签到,获得积分10
20秒前
雍以菱完成签到,获得积分10
21秒前
开朗的翠丝完成签到,获得积分10
21秒前
21秒前
小鱼发布了新的文献求助10
21秒前
21秒前
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136176
求助须知:如何正确求助?哪些是违规求助? 2787079
关于积分的说明 7780454
捐赠科研通 2443217
什么是DOI,文献DOI怎么找? 1298964
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870