Superior electrical conductivity-strength combination of an in-situ fabricated La2O3-doped copper/graphene composite conductor

石墨烯 材料科学 复合材料 复合数 石墨烯泡沫 电阻率和电导率 氧化石墨烯纸 烧结 极限抗拉强度 纳米技术 冶金 电气工程 工程类
作者
Tingting Zuo,Meng Wang,Jiangli Xue,Yadong Ru,Ling Zhang,Bo Da,Yue Wu,Zhuang Xu,Zhaoshun Gao,Peter K. Liaw,Li Han,Li‐Ye Xiao
出处
期刊:Carbon [Elsevier]
卷期号:197: 455-465 被引量:16
标识
DOI:10.1016/j.carbon.2022.06.086
摘要

In the past decade, Cu/graphene composite shows great potential in energy and electric power fields. Unfortunately, the uneven dispersion of graphene and the poor interfacial bonding between the copper and graphene have always been the bottlenecks hindering its development. Furthermore, it is almost impossible to obtain facile and scalable Cu/graphene materials with the combined high electrical conductivity and great strength through traditional ways. Here, we innovatively introduce lanthanum acetate as the carbon source to in-situ grow high-quality graphene and nano-sized La2O3 particles in copper through vacuum hot-press sintering to solve the above problems. The uniformly-distributed three-dimensional (3D) graphene network acts as an electron-transport channel, and the in-situ generated nano-sized La2O3 particles pin the Cu/graphene interface. Both the graphene and the nano-sized particles strengthen the matrix and hinder the matrix to soften at high temperatures. By further optimizing the sintering parameters, the doping content, the cold-drawing process, the La2O3-doped Cu/graphene composite wire with the high electrical conductivity of 95.5% IACS (International Annealed Copper Standard), great tensile strength of 539 MPa, and high softening temperature about 500 °C are obtained. The present work provides a new design idea for interface-strengthening Cu/graphene composites and establishes a suitable method for the large-scale production of high-performance Cu/graphene composites, which can be used at higher temperatures, such as the integrated circuit lead frame and the railway contact line.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松乐巧完成签到,获得积分10
刚刚
小蘑菇应助健忘泽洋采纳,获得10
1秒前
1秒前
Rui完成签到,获得积分20
1秒前
whimsyhui完成签到,获得积分10
2秒前
复杂硬币发布了新的文献求助10
2秒前
3秒前
幸福大白发布了新的文献求助30
3秒前
幽月发布了新的文献求助10
4秒前
jy发布了新的文献求助10
5秒前
科研通AI5应助路飞采纳,获得10
7秒前
香蕉觅云应助hh采纳,获得10
7秒前
8秒前
小尾巴完成签到,获得积分10
8秒前
12秒前
12秒前
12秒前
13秒前
大个应助科研通管家采纳,获得10
14秒前
猪猪hero应助科研通管家采纳,获得10
14秒前
爱静静应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
15秒前
15秒前
orixero应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
Zn应助科研通管家采纳,获得20
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
Zn应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
16秒前
希望天下0贩的0应助zakary采纳,获得10
17秒前
yao发布了新的文献求助10
17秒前
kkx发布了新的文献求助10
17秒前
L1nJ1nG完成签到,获得积分10
18秒前
渝州人应助夏夜采纳,获得10
18秒前
ding应助x123采纳,获得10
18秒前
复杂硬币完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555334
求助须知:如何正确求助?哪些是违规求助? 3130933
关于积分的说明 9389211
捐赠科研通 2830448
什么是DOI,文献DOI怎么找? 1555992
邀请新用户注册赠送积分活动 726371
科研通“疑难数据库(出版商)”最低求助积分说明 715737