局部二进制模式
计算机科学
人工智能
水准点(测量)
特征(语言学)
特征提取
面子(社会学概念)
面部识别系统
模式识别(心理学)
指纹(计算)
直方图
计算机视觉
图像(数学)
哲学
社会学
语言学
社会科学
地理
大地测量学
作者
Khalid M. Hosny,Aya Hamad,Osama M. Elkomy,Ehab R. Mohamed
出处
期刊:PeerJ
[PeerJ]
日期:2022-06-28
卷期号:8: e1008-e1008
被引量:3
标识
DOI:10.7717/peerj-cs.1008
摘要
Because of the current COVID-19 circumstances in the world and the tremendous technological developments, it has become necessary to use this technology to combat the spread of the new coronavirus. The systems that depend on using hands, such as fingerprint systems and PINs in ATM systems, could lead to infection, so they have become undesirable and we can replace them by using facial recognition instead. With the development of technology and the availability of nano devices like the Raspberry Pi, such applications can be implemented easily. This study presents an efficient face recognition system in which the face image is taken by a standalone camera and then passed to the Raspberry Pi to extract the face features and then compare them with the database. This approach is named MORSCMs-LBP by combining two algorithms for feature extraction: Local Binary Pattern (LBP) as a local feature descriptor and radial substituted Chebyshev moments (MORSCMs) as a global feature descriptor. The significant advantage of this method is that it combines the local and global features into a single feature vector from the detected faces. The proposed approach MORSCMs-LBP has been implemented on the Raspberry Pi 4 computer model B with 1 GB of RAM using C++ OpenCV. We assessed our method on various benchmark datasets: face95 with an accuracy of 99.0278%, face96 with an accuracy of 99.4375%, and grimace with 100% accuracy. We evaluated the proposed MORSCMs-LBP technique against other recently published approaches; the comparison shows a significant improvement in favour of the proposed approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI