Virtual screening of PEBP1 inhibitors by combining 2D/3D-QSAR analysis, hologram QSAR, homology modeling, molecular docking analysis, and molecular dynamic simulations

数量结构-活动关系 同源建模 分子动力学 对接(动物) 氢键 化学 虚拟筛选 计算化学 生物信息学 立体化学 分子 有机化学 生物化学 医学 基因 护理部
作者
Mourad Stitou,Hamid Toufik,Taoufik Akabli,Fatima Lamchouri
出处
期刊:Journal of Molecular Modeling [Springer Science+Business Media]
卷期号:28 (6)
标识
DOI:10.1007/s00894-022-05143-6
摘要

Human phosphatidylethanolamine binding protein 1 (hPEBP1) is a novel target affecting many cellular signaling pathways involved in the formation of metastases. It can be used in the treatment of many cases of cancer. For these reasons, pharmaceutical companies use computational approaches, including multi-QSAR (2D, 3D, and hologram QSAR) analysis, homology modeling, molecular docking analysis, and molecular dynamic simulations, to speed up the drug discovery process. In this paper, QSAR modeling was conducted using two quantum chemistry optimization methods (AM1 and DFT levels). As per PLS results, we found that the DFT/B3LYP method presents high predictability according to 2D-QSAR, CoMFA, CoMSIA, and hologram QSAR studies, with Q2 of 0.81, 0.67, 0.79, and 0.67, and external power with R2pred of 0.78, 0.58, 0.66, and 0.56, respectively. This result has been validated by CoMFA/CoMSIA graphics, which suggests that electrostatic fields combined with hydrogen bond donor/acceptor fields are beneficial to the antiproliferative activity. While the hologram QSAR models show the contributions of each fragment in improving the activity. The results from QSAR analyses revealed that ursolic acids with heterocyclic rings could improve the activities. Ramachandran plot validated the modeled PEBP1 protein. Molecular docking and MD simulations revealed that the hydrophobic and hydrogen bond interactions are dominant in the PEBP1's pocket. These results were used to predict in silico structures of three new compounds with potential anticancer activity. Similar molecular docking stability studies and molecular dynamics simulations were conducted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助大大彬采纳,获得30
1秒前
无花果粒橙完成签到,获得积分10
1秒前
科研通AI5应助勤奋的千山采纳,获得10
1秒前
2秒前
又晴完成签到,获得积分20
3秒前
ccalvintan完成签到,获得积分10
3秒前
Chosen_1完成签到,获得积分10
3秒前
庄怀逸完成签到 ,获得积分10
4秒前
橙子完成签到,获得积分10
5秒前
彭于晏应助周钰波采纳,获得10
6秒前
汉堡包应助文献采纳,获得10
6秒前
欣欣子完成签到 ,获得积分10
6秒前
7秒前
8秒前
勤恳易谙完成签到,获得积分10
8秒前
Nereus完成签到 ,获得积分10
9秒前
清辞发布了新的文献求助10
10秒前
喵喵完成签到,获得积分10
10秒前
张萌完成签到 ,获得积分10
10秒前
10秒前
11秒前
田様应助妙松采纳,获得10
11秒前
akmdh完成签到,获得积分10
11秒前
舒心的秋荷完成签到 ,获得积分20
12秒前
12秒前
堪怀发布了新的文献求助30
12秒前
13秒前
13秒前
干净的问寒完成签到,获得积分10
13秒前
得灵梦发布了新的文献求助10
13秒前
13秒前
彭彭完成签到,获得积分10
14秒前
JayWu完成签到,获得积分10
14秒前
Lazarus_x完成签到,获得积分10
14秒前
豆沙包完成签到,获得积分10
15秒前
15秒前
科研通AI5应助yym0705采纳,获得10
16秒前
渡江渡发布了新的文献求助10
16秒前
16秒前
yydhda发布了新的文献求助30
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733849
求助须知:如何正确求助?哪些是违规求助? 3278067
关于积分的说明 10006761
捐赠科研通 2994206
什么是DOI,文献DOI怎么找? 1642969
邀请新用户注册赠送积分活动 780752
科研通“疑难数据库(出版商)”最低求助积分说明 749006