A Deep Learning Approach to Predict Conductive Hearing Loss in Patients With Otitis Media With Effusion Using Otoscopic Images

医学 中耳炎 听力学 逻辑回归 接收机工作特性 传导性听力损失 回归分析 渗出 听力损失 外科 内科学 统计 数学
作者
Junbo Zeng,Weibiao Kang,Suijun Chen,Yi Lin,Wenting Deng,Yajing Wang,Guisheng Chen,Kai Ma,Fei Zhao,Yefeng Zheng,Maojin Liang,Linqi Zeng,Weijie Ye,Peng Li,Yubin Chen,Guoping Chen,Jinliang Gao,Minjian Wu,Yuejia Su,Yiqing Zheng,Yuexin Cai
出处
期刊:JAMA otolaryngology-- head & neck surgery [American Medical Association]
卷期号:148 (7): 612-612 被引量:14
标识
DOI:10.1001/jamaoto.2022.0900
摘要

Importance

Otitis media with effusion (OME) is one of the most common causes of acquired conductive hearing loss (CHL). Persistent hearing loss is associated with poor childhood speech and language development and other adverse consequence. However, to obtain accurate and reliable hearing thresholds largely requires a high degree of cooperation from the patients.

Objective

To predict CHL from otoscopic images using deep learning (DL) techniques and a logistic regression model based on tympanic membrane features.

Design, Setting, and Participants

A retrospective diagnostic/prognostic study was conducted using 2790 otoscopic images obtained from multiple centers between January 2015 and November 2020. Participants were aged between 4 and 89 years. Of 1239 participants, there were 209 ears from children and adolescents (aged 4-18 years [16.87%]), 804 ears from adults (aged 18-60 years [64.89%]), and 226 ears from older people (aged >60 years, [18.24%]). Overall, 679 ears (54.8%) were from men. The 2790 otoscopic images were randomly assigned into a training set (2232 [80%]), and validation set (558 [20%]). The DL model was developed to predict an average air-bone gap greater than 10 dB. A logistic regression model was also developed based on otoscopic features.

Main Outcomes and Measures

The performance of the DL model in predicting CHL was measured using the area under the receiver operating curve (AUC), accuracy, and F1 score (a measure of the quality of a classifier, which is the harmonic mean of precision and recall; a higher F1 score means better performance). In addition, these evaluation parameters were compared to results obtained from the logistic regression model and predictions made by three otologists.

Results

The performance of the DL model in predicting CHL showed the AUC of 0.74, accuracy of 81%, and F1 score of 0.89. This was better than the results from the logistic regression model (ie, AUC of 0.60, accuracy of 76%, and F1 score of 0.82), and much improved on the performance of the 3 otologists; accuracy of 16%, 30%, 39%, and F1 scores of 0.09, 0.18, and 0.25, respectively. Furthermore, the DL model took 2.5 seconds to predict from 205 otoscopic images, whereas the 3 otologists spent 633 seconds, 645 seconds, and 692 seconds, respectively.

Conclusions and Relevance

The model in this diagnostic/prognostic study provided greater accuracy in prediction of CHL in ears with OME than those obtained from the logistic regression model and otologists. This indicates great potential for the use of artificial intelligence tools to facilitate CHL evaluation when CHL is unable to be measured.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
迷人囧完成签到 ,获得积分10
1秒前
内向靖巧发布了新的文献求助10
1秒前
研友_VZG7GZ应助慕容真采纳,获得10
1秒前
传奇3应助journey采纳,获得10
2秒前
ark861023发布了新的文献求助10
4秒前
4秒前
4秒前
zhangdatong发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
hl268完成签到,获得积分10
6秒前
6秒前
从容的皮皮虾完成签到 ,获得积分10
6秒前
6秒前
宝宝熊的熊宝宝完成签到,获得积分10
7秒前
刘艺娜发布了新的文献求助10
8秒前
8秒前
马森关注了科研通微信公众号
8秒前
君君欧发布了新的文献求助10
9秒前
iufan发布了新的文献求助10
9秒前
C2完成签到,获得积分10
10秒前
香蕉觅云应助柠檬要加冰采纳,获得10
10秒前
郝宝真发布了新的文献求助10
10秒前
大巧若拙完成签到,获得积分10
10秒前
Lone完成签到,获得积分10
10秒前
薰硝壤应助鸿鹄在天涯采纳,获得30
12秒前
gaoyue发布了新的文献求助10
12秒前
13秒前
彩虹完成签到,获得积分10
13秒前
15秒前
俊逸山芙应助含蓄的书双采纳,获得10
15秒前
星星完成签到 ,获得积分10
15秒前
Soleil完成签到 ,获得积分10
17秒前
qqy完成签到,获得积分10
18秒前
18秒前
18秒前
小蘑菇应助辣个男子采纳,获得10
18秒前
kkk发布了新的文献求助10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134447
求助须知:如何正确求助?哪些是违规求助? 2785391
关于积分的说明 7771957
捐赠科研通 2441024
什么是DOI,文献DOI怎么找? 1297678
科研通“疑难数据库(出版商)”最低求助积分说明 625042
版权声明 600813