Multi-parametric MRI-based radiomics signature for preoperative prediction of Ki-67 proliferation status in sinonasal malignancies: a two-centre study

医学 神经组阅片室 逻辑回归 无线电技术 接收机工作特性 放射科 参数统计 核医学 内科学 统计 数学 神经学 精神科
作者
Shucheng Bi,Jie Li,Tongyu Wang,Fengyuan Man,Peng Zhang,Feng Hou,Hexiang Wang,Dapeng Hao
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (10): 6933-6942 被引量:19
标识
DOI:10.1007/s00330-022-08780-w
摘要

ObjectiveTo assess the predictive ability of a multi-parametric MRI-based radiomics signature (RS) for the preoperative evaluation of Ki-67 proliferation status in sinonasal malignancies.MethodsA total of 128 patients with sinonasal malignancies that underwent multi-parametric MRIs at two medical centres were retrospectively analysed. Data from one medical centre (n = 77) were used to develop the predictive models and data from the other medical centre (n = 51) constitute the test dataset. Clinical data and conventional MRI findings were reviewed to identify significant predictors. Radiomics features were determined using maximum relevance minimum redundancy and least absolute shrinkage and selection operator algorithms. Subsequently, RSs were established using a logistic regression (LR) algorithm. The predictive performance of RSs was assessed using calibration, decision curve analysis (DCA), accuracy, and AUC.ResultsNo independent predictors of high Ki-67 proliferation were observed based on clinical data and conventional MRI findings. RS-T1, RS-T2, and RS-T1c (contrast enhancement T1WI) were established based on a single-parametric MRI. RS-Combined (combining T1WI, FS-T2WI, and T1c features) was developed based on multi-parametric MRI and achieved an AUC and accuracy of 0.852 (0.733–0.971) and 86.3%, respectively, on the test dataset. The calibration curve and DCA demonstrated an improved fitness and benefits in clinical practice.ConclusionsA multi-parametric MRI-based RS may be used as a non-invasive, dependable, and accurate tool for preoperative evaluation of the Ki-67 proliferation status to overcome the sampling bias in sinonasal malignancies.Key Points • Multi-parametric MRI-based radiomics signatures (RSs) are used to preoperatively evaluate the proliferation status of Ki-67 in sinonasal malignancies. • Radiomics features are determined using maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) algorithms. • RSs are established using a logistic regression (LR) algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助秋星人采纳,获得10
刚刚
1秒前
1秒前
传奇3应助ning采纳,获得10
1秒前
1秒前
西瓜鹿发布了新的文献求助10
2秒前
2秒前
yyx发布了新的文献求助10
2秒前
3秒前
aaaaa发布了新的文献求助10
3秒前
赘婿应助半个桃子采纳,获得30
3秒前
赵酬海发布了新的文献求助10
3秒前
3秒前
奋斗凝蝶发布了新的文献求助10
3秒前
李爱国应助贺兰生羽采纳,获得10
4秒前
满意剑成发布了新的文献求助10
4秒前
破忒头应助11111111采纳,获得10
6秒前
平常平凡发布了新的文献求助10
6秒前
6秒前
Assure发布了新的文献求助10
7秒前
无花果应助tdtk采纳,获得10
8秒前
lwt完成签到,获得积分10
8秒前
9秒前
hyx发布了新的文献求助10
9秒前
Reid完成签到,获得积分10
9秒前
9秒前
圆听听完成签到 ,获得积分10
9秒前
10秒前
tangtang787发布了新的文献求助10
10秒前
SciGPT应助王雨馨采纳,获得10
10秒前
11秒前
世界和平完成签到,获得积分10
11秒前
add发布了新的文献求助10
11秒前
平常平凡完成签到,获得积分10
12秒前
香蕉觅云应助ss采纳,获得10
12秒前
12秒前
DAKUMA完成签到,获得积分10
12秒前
12秒前
jjkk发布了新的文献求助10
13秒前
小林发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330723
求助须知:如何正确求助?哪些是违规求助? 4470169
关于积分的说明 13912355
捐赠科研通 4363480
什么是DOI,文献DOI怎么找? 2396987
邀请新用户注册赠送积分活动 1390354
关于科研通互助平台的介绍 1361093