Multi-parametric MRI-based radiomics signature for preoperative prediction of Ki-67 proliferation status in sinonasal malignancies: a two-centre study

医学 神经组阅片室 逻辑回归 无线电技术 接收机工作特性 放射科 参数统计 核医学 内科学 统计 数学 神经学 精神科
作者
Shucheng Bi,Jie Li,Tongyu Wang,Fengyuan Man,Peng Zhang,Feng Hou,Hexiang Wang,Dapeng Hao
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (10): 6933-6942 被引量:16
标识
DOI:10.1007/s00330-022-08780-w
摘要

ObjectiveTo assess the predictive ability of a multi-parametric MRI-based radiomics signature (RS) for the preoperative evaluation of Ki-67 proliferation status in sinonasal malignancies.MethodsA total of 128 patients with sinonasal malignancies that underwent multi-parametric MRIs at two medical centres were retrospectively analysed. Data from one medical centre (n = 77) were used to develop the predictive models and data from the other medical centre (n = 51) constitute the test dataset. Clinical data and conventional MRI findings were reviewed to identify significant predictors. Radiomics features were determined using maximum relevance minimum redundancy and least absolute shrinkage and selection operator algorithms. Subsequently, RSs were established using a logistic regression (LR) algorithm. The predictive performance of RSs was assessed using calibration, decision curve analysis (DCA), accuracy, and AUC.ResultsNo independent predictors of high Ki-67 proliferation were observed based on clinical data and conventional MRI findings. RS-T1, RS-T2, and RS-T1c (contrast enhancement T1WI) were established based on a single-parametric MRI. RS-Combined (combining T1WI, FS-T2WI, and T1c features) was developed based on multi-parametric MRI and achieved an AUC and accuracy of 0.852 (0.733–0.971) and 86.3%, respectively, on the test dataset. The calibration curve and DCA demonstrated an improved fitness and benefits in clinical practice.ConclusionsA multi-parametric MRI-based RS may be used as a non-invasive, dependable, and accurate tool for preoperative evaluation of the Ki-67 proliferation status to overcome the sampling bias in sinonasal malignancies.Key Points • Multi-parametric MRI-based radiomics signatures (RSs) are used to preoperatively evaluate the proliferation status of Ki-67 in sinonasal malignancies. • Radiomics features are determined using maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) algorithms. • RSs are established using a logistic regression (LR) algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
ET发布了新的文献求助10
2秒前
wangkun090121发布了新的文献求助10
6秒前
7秒前
10秒前
12秒前
jiangru发布了新的文献求助10
14秒前
念812发布了新的文献求助10
15秒前
Skyrin完成签到,获得积分10
20秒前
21秒前
Cyber_relic完成签到,获得积分0
21秒前
22秒前
23秒前
mumufan完成签到,获得积分10
23秒前
szd完成签到,获得积分10
24秒前
木子田心发布了新的文献求助10
26秒前
忧郁尔竹完成签到 ,获得积分10
27秒前
冯123发布了新的文献求助10
28秒前
小刘完成签到,获得积分20
29秒前
JamesPei应助iwersonshmtu采纳,获得10
33秒前
33秒前
35秒前
37秒前
乐乐应助淡定海亦采纳,获得10
40秒前
41秒前
yang发布了新的文献求助10
41秒前
42秒前
叮叮完成签到 ,获得积分10
44秒前
摆烂昊发布了新的文献求助10
44秒前
45秒前
小刘发布了新的文献求助10
46秒前
47秒前
彭于晏应助科研通管家采纳,获得10
51秒前
51秒前
orixero应助科研通管家采纳,获得10
51秒前
薛人英应助科研通管家采纳,获得10
51秒前
FashionBoy应助科研通管家采纳,获得10
51秒前
wanci应助科研通管家采纳,获得10
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Divinatorische Texte II. Opferschau-Omina 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358789
求助须知:如何正确求助?哪些是违规求助? 2981866
关于积分的说明 8700910
捐赠科研通 2663551
什么是DOI,文献DOI怎么找? 1458522
科研通“疑难数据库(出版商)”最低求助积分说明 675150
邀请新用户注册赠送积分活动 666189