Raman spectroscopy for on-line monitoring of botanical extraction process using convolutional neural network with background subtraction

卷积神经网络 人工智能 计算机科学 预处理器 模式识别(心理学) 偏最小二乘回归 背景减法 萃取(化学) 减法 生物系统 数学 化学 机器学习 色谱法 像素 生物 算术
作者
Chenlei Ru,Wu Wen,Yi Zhong
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:284: 121494-121494 被引量:13
标识
DOI:10.1016/j.saa.2022.121494
摘要

Aqueous extraction is the most common and cost-effective means of obtaining active ingredients from medicinal plants. However, botanical extracts generally contain high pigment content and complex chemical composition posing a challenge for the process analysis of aqueous extraction. Here, we employed Raman spectroscopy to monitor the physical and chemical properties during the extraction process using convolution neural network (CNN) with background subtraction. Real-time spectra were first preprocessed to eliminate fluorescence background interference. Next, two types of CNN models, the one-dimensional CNN (1D-CNN) based on one preprocessing method, and two-dimensional CNN (2D-CNN) based on a concatenation of differentially pretreated data blocks, were used to receive the preprocessed spectra data. Two case studies were conducted for 1D- and 2D-CNN: the extraction of Aurantii fructus, and the co-extraction of Radix Salvia miltiorrhiza and Rhizoma Ligusticum chuanxiong. Furthermore, partial least squares (PLS) models and sequential preprocessing through orthogonalization (SPORT) models were developed and compared with 1D-CNN and 2D-CNN, respectively. CNN-based methods were superior to other models in terms of prediction accuracy, with 2D-CNN yielding the best results. These results indicated that preprocessing and CNN methods were highly complementary, and could effectively remove the fluorescence effect and artefacts introduced by pretreatment in spectral profile. To the best of our knowledge, this is the first study to demonstrate that a combination of preprocessing and CNN leads to improved prediction performance of analytes when using Raman spectroscopy for online monitoring high-pigmented samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fatcat完成签到,获得积分10
刚刚
S月小小发布了新的文献求助10
1秒前
自觉书琴完成签到 ,获得积分10
4秒前
番茄豆丁完成签到 ,获得积分10
5秒前
vicky完成签到 ,获得积分10
7秒前
甜甜友容完成签到,获得积分10
10秒前
高无怨发布了新的文献求助10
15秒前
和谐的醉山完成签到,获得积分0
17秒前
言者完成签到 ,获得积分10
19秒前
19秒前
震速流完成签到 ,获得积分10
19秒前
满当当完成签到 ,获得积分10
19秒前
20秒前
猪猪hero发布了新的文献求助10
22秒前
百里瓶窑发布了新的文献求助10
24秒前
24秒前
lxh完成签到 ,获得积分10
26秒前
简单发布了新的文献求助10
26秒前
X_Nano发布了新的文献求助10
27秒前
28秒前
百里瓶窑完成签到,获得积分10
32秒前
缓慢耳机发布了新的文献求助10
32秒前
温暖完成签到 ,获得积分10
33秒前
OIC完成签到,获得积分10
34秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
LPPQBB应助科研通管家采纳,获得100
35秒前
tuanheqi应助科研通管家采纳,获得150
35秒前
jszz应助科研通管家采纳,获得20
35秒前
35秒前
了尘应助科研通管家采纳,获得10
35秒前
nanfeng完成签到 ,获得积分10
35秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
Smar_zcl应助科研通管家采纳,获得100
35秒前
小二郎应助科研通管家采纳,获得10
35秒前
我是老大应助科研通管家采纳,获得20
35秒前
35秒前
riccixuu完成签到 ,获得积分10
37秒前
不要慌完成签到 ,获得积分10
37秒前
郭1994完成签到 ,获得积分10
44秒前
yuyeqing完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304355
求助须知:如何正确求助?哪些是违规求助? 4450919
关于积分的说明 13850072
捐赠科研通 4337904
什么是DOI,文献DOI怎么找? 2381702
邀请新用户注册赠送积分活动 1376728
关于科研通互助平台的介绍 1343825