Raman spectroscopy for on-line monitoring of botanical extraction process using convolutional neural network with background subtraction

卷积神经网络 人工智能 计算机科学 预处理器 模式识别(心理学) 偏最小二乘回归 背景减法 萃取(化学) 减法 生物系统 数学 化学 机器学习 色谱法 像素 生物 算术
作者
Chen-Lei Ru,Wu Wen,Yi Zhong
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:284: 121494-121494 被引量:11
标识
DOI:10.1016/j.saa.2022.121494
摘要

Aqueous extraction is the most common and cost-effective means of obtaining active ingredients from medicinal plants. However, botanical extracts generally contain high pigment content and complex chemical composition posing a challenge for the process analysis of aqueous extraction. Here, we employed Raman spectroscopy to monitor the physical and chemical properties during the extraction process using convolution neural network (CNN) with background subtraction. Real-time spectra were first preprocessed to eliminate fluorescence background interference. Next, two types of CNN models, the one-dimensional CNN (1D-CNN) based on one preprocessing method, and two-dimensional CNN (2D-CNN) based on a concatenation of differentially pretreated data blocks, were used to receive the preprocessed spectra data. Two case studies were conducted for 1D- and 2D-CNN: the extraction of Aurantii fructus, and the co-extraction of Radix Salvia miltiorrhiza and Rhizoma Ligusticum chuanxiong. Furthermore, partial least squares (PLS) models and sequential preprocessing through orthogonalization (SPORT) models were developed and compared with 1D-CNN and 2D-CNN, respectively. CNN-based methods were superior to other models in terms of prediction accuracy, with 2D-CNN yielding the best results. These results indicated that preprocessing and CNN methods were highly complementary, and could effectively remove the fluorescence effect and artefacts introduced by pretreatment in spectral profile. To the best of our knowledge, this is the first study to demonstrate that a combination of preprocessing and CNN leads to improved prediction performance of analytes when using Raman spectroscopy for online monitoring high-pigmented samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助任性的咖啡采纳,获得10
1秒前
泡泡汽水发布了新的文献求助10
2秒前
完美世界应助1874采纳,获得10
2秒前
沐玖关注了科研通微信公众号
2秒前
theday完成签到,获得积分10
2秒前
4秒前
陈陈完成签到 ,获得积分20
4秒前
xiaojingyang0802完成签到,获得积分10
6秒前
7秒前
liu完成签到,获得积分10
10秒前
12秒前
seven完成签到,获得积分10
14秒前
14秒前
15秒前
1874发布了新的文献求助10
16秒前
16秒前
17秒前
Akim应助张一采纳,获得10
17秒前
呼呼叫发布了新的文献求助10
18秒前
杜ss完成签到,获得积分10
19秒前
mgg完成签到,获得积分10
19秒前
街上的纸屑完成签到 ,获得积分10
19秒前
Wwhy发布了新的文献求助10
19秒前
hhh完成签到,获得积分20
19秒前
汉堡包应助qixiiii采纳,获得10
20秒前
yyc发布了新的文献求助10
20秒前
言言完成签到,获得积分10
21秒前
21秒前
杜ss发布了新的文献求助10
22秒前
22秒前
直率毛豆完成签到 ,获得积分10
23秒前
小young完成签到 ,获得积分10
23秒前
24秒前
24秒前
kilig_r完成签到,获得积分10
24秒前
负责丑发布了新的文献求助30
27秒前
27秒前
28秒前
csxx发布了新的文献求助10
29秒前
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292496
求助须知:如何正确求助?哪些是违规求助? 2928822
关于积分的说明 8438538
捐赠科研通 2600907
什么是DOI,文献DOI怎么找? 1419337
科研通“疑难数据库(出版商)”最低求助积分说明 660282
邀请新用户注册赠送积分活动 642921