已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Raman spectroscopy for on-line monitoring of botanical extraction process using convolutional neural network with background subtraction

卷积神经网络 人工智能 计算机科学 预处理器 模式识别(心理学) 偏最小二乘回归 背景减法 萃取(化学) 减法 生物系统 数学 化学 机器学习 色谱法 像素 生物 算术
作者
Chenlei Ru,Wu Wen,Yi Zhong
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:284: 121494-121494 被引量:13
标识
DOI:10.1016/j.saa.2022.121494
摘要

Aqueous extraction is the most common and cost-effective means of obtaining active ingredients from medicinal plants. However, botanical extracts generally contain high pigment content and complex chemical composition posing a challenge for the process analysis of aqueous extraction. Here, we employed Raman spectroscopy to monitor the physical and chemical properties during the extraction process using convolution neural network (CNN) with background subtraction. Real-time spectra were first preprocessed to eliminate fluorescence background interference. Next, two types of CNN models, the one-dimensional CNN (1D-CNN) based on one preprocessing method, and two-dimensional CNN (2D-CNN) based on a concatenation of differentially pretreated data blocks, were used to receive the preprocessed spectra data. Two case studies were conducted for 1D- and 2D-CNN: the extraction of Aurantii fructus, and the co-extraction of Radix Salvia miltiorrhiza and Rhizoma Ligusticum chuanxiong. Furthermore, partial least squares (PLS) models and sequential preprocessing through orthogonalization (SPORT) models were developed and compared with 1D-CNN and 2D-CNN, respectively. CNN-based methods were superior to other models in terms of prediction accuracy, with 2D-CNN yielding the best results. These results indicated that preprocessing and CNN methods were highly complementary, and could effectively remove the fluorescence effect and artefacts introduced by pretreatment in spectral profile. To the best of our knowledge, this is the first study to demonstrate that a combination of preprocessing and CNN leads to improved prediction performance of analytes when using Raman spectroscopy for online monitoring high-pigmented samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jimskylxk发布了新的文献求助10
刚刚
刚刚
搞怪山晴发布了新的文献求助10
刚刚
研友_VZG7GZ应助冥王星采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
隐形曼青应助jjdeng采纳,获得10
5秒前
恒星的恒心完成签到 ,获得积分10
6秒前
wanci应助lolly采纳,获得10
6秒前
小蘑菇应助搞怪山晴采纳,获得10
7秒前
8秒前
烟花应助徐嘎嘎采纳,获得10
9秒前
9秒前
9秒前
9秒前
舒适的方盒完成签到 ,获得积分10
9秒前
JaneChen发布了新的文献求助10
9秒前
10秒前
qqer完成签到,获得积分10
11秒前
冥王星发布了新的文献求助10
11秒前
Manta完成签到,获得积分10
12秒前
Hello应助执着的觅露采纳,获得30
12秒前
15秒前
15秒前
开心依珊发布了新的文献求助10
15秒前
孟晓晖完成签到 ,获得积分10
15秒前
18秒前
kk完成签到,获得积分10
18秒前
19秒前
djxdjt发布了新的文献求助10
19秒前
jjdeng发布了新的文献求助10
20秒前
orixero应助jimskylxk采纳,获得10
20秒前
今后应助caoyy采纳,获得10
21秒前
尝原完成签到,获得积分10
21秒前
科研通AI6.1应助小明采纳,获得10
21秒前
Aimee发布了新的文献求助30
23秒前
lydia完成签到,获得积分10
24秒前
开心依珊完成签到,获得积分20
24秒前
25秒前
大模型应助Vincent采纳,获得10
27秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771909
求助须知:如何正确求助?哪些是违规求助? 5594239
关于积分的说明 15428487
捐赠科研通 4905096
什么是DOI,文献DOI怎么找? 2639208
邀请新用户注册赠送积分活动 1587085
关于科研通互助平台的介绍 1541964