Raman spectroscopy for on-line monitoring of botanical extraction process using convolutional neural network with background subtraction

卷积神经网络 人工智能 计算机科学 预处理器 模式识别(心理学) 偏最小二乘回归 背景减法 萃取(化学) 减法 生物系统 数学 化学 机器学习 色谱法 像素 生物 算术
作者
Chenlei Ru,Wu Wen,Yi Zhong
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:284: 121494-121494 被引量:12
标识
DOI:10.1016/j.saa.2022.121494
摘要

Aqueous extraction is the most common and cost-effective means of obtaining active ingredients from medicinal plants. However, botanical extracts generally contain high pigment content and complex chemical composition posing a challenge for the process analysis of aqueous extraction. Here, we employed Raman spectroscopy to monitor the physical and chemical properties during the extraction process using convolution neural network (CNN) with background subtraction. Real-time spectra were first preprocessed to eliminate fluorescence background interference. Next, two types of CNN models, the one-dimensional CNN (1D-CNN) based on one preprocessing method, and two-dimensional CNN (2D-CNN) based on a concatenation of differentially pretreated data blocks, were used to receive the preprocessed spectra data. Two case studies were conducted for 1D- and 2D-CNN: the extraction of Aurantii fructus, and the co-extraction of Radix Salvia miltiorrhiza and Rhizoma Ligusticum chuanxiong. Furthermore, partial least squares (PLS) models and sequential preprocessing through orthogonalization (SPORT) models were developed and compared with 1D-CNN and 2D-CNN, respectively. CNN-based methods were superior to other models in terms of prediction accuracy, with 2D-CNN yielding the best results. These results indicated that preprocessing and CNN methods were highly complementary, and could effectively remove the fluorescence effect and artefacts introduced by pretreatment in spectral profile. To the best of our knowledge, this is the first study to demonstrate that a combination of preprocessing and CNN leads to improved prediction performance of analytes when using Raman spectroscopy for online monitoring high-pigmented samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
麻麻发布了新的文献求助20
1秒前
量子星尘发布了新的文献求助10
2秒前
lzc4632完成签到,获得积分10
3秒前
黑咖啡完成签到,获得积分10
4秒前
5秒前
汉堡包应助WWW采纳,获得10
6秒前
6秒前
美好灵寒发布了新的文献求助10
6秒前
9秒前
10秒前
领导范儿应助嘻嘻采纳,获得10
11秒前
11秒前
轻松面包发布了新的文献求助10
13秒前
ark861023发布了新的文献求助10
13秒前
14秒前
14秒前
大方岩完成签到,获得积分10
15秒前
书亚发布了新的文献求助10
15秒前
15秒前
科研通AI5应助友好驳采纳,获得10
16秒前
小马甲应助朱先生采纳,获得10
18秒前
18秒前
gds完成签到,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
解语花发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
WWW发布了新的文献求助10
20秒前
20秒前
和谐的小懒虫完成签到,获得积分10
20秒前
搜集达人应助HXL采纳,获得10
21秒前
21秒前
21秒前
FashionBoy应助fu采纳,获得10
21秒前
22秒前
22秒前
严健翎发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4590079
求助须知:如何正确求助?哪些是违规求助? 4005062
关于积分的说明 12400100
捐赠科研通 3682035
什么是DOI,文献DOI怎么找? 2029370
邀请新用户注册赠送积分活动 1062987
科研通“疑难数据库(出版商)”最低求助积分说明 948589