Raman spectroscopy for on-line monitoring of botanical extraction process using convolutional neural network with background subtraction

卷积神经网络 人工智能 计算机科学 预处理器 模式识别(心理学) 偏最小二乘回归 背景减法 萃取(化学) 减法 生物系统 数学 化学 机器学习 色谱法 像素 生物 算术
作者
Chenlei Ru,Wu Wen,Yi Zhong
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:284: 121494-121494 被引量:13
标识
DOI:10.1016/j.saa.2022.121494
摘要

Aqueous extraction is the most common and cost-effective means of obtaining active ingredients from medicinal plants. However, botanical extracts generally contain high pigment content and complex chemical composition posing a challenge for the process analysis of aqueous extraction. Here, we employed Raman spectroscopy to monitor the physical and chemical properties during the extraction process using convolution neural network (CNN) with background subtraction. Real-time spectra were first preprocessed to eliminate fluorescence background interference. Next, two types of CNN models, the one-dimensional CNN (1D-CNN) based on one preprocessing method, and two-dimensional CNN (2D-CNN) based on a concatenation of differentially pretreated data blocks, were used to receive the preprocessed spectra data. Two case studies were conducted for 1D- and 2D-CNN: the extraction of Aurantii fructus, and the co-extraction of Radix Salvia miltiorrhiza and Rhizoma Ligusticum chuanxiong. Furthermore, partial least squares (PLS) models and sequential preprocessing through orthogonalization (SPORT) models were developed and compared with 1D-CNN and 2D-CNN, respectively. CNN-based methods were superior to other models in terms of prediction accuracy, with 2D-CNN yielding the best results. These results indicated that preprocessing and CNN methods were highly complementary, and could effectively remove the fluorescence effect and artefacts introduced by pretreatment in spectral profile. To the best of our knowledge, this is the first study to demonstrate that a combination of preprocessing and CNN leads to improved prediction performance of analytes when using Raman spectroscopy for online monitoring high-pigmented samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
李1完成签到 ,获得积分10
2秒前
阿楠发布了新的文献求助10
3秒前
zzc1520完成签到,获得积分10
3秒前
伶俐惜萱发布了新的文献求助10
3秒前
romy完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
ken完成签到,获得积分20
5秒前
5秒前
5秒前
包容可仁完成签到,获得积分10
5秒前
一一发布了新的文献求助10
5秒前
姜茶发布了新的文献求助30
6秒前
BowieHuang应助zlf采纳,获得10
8秒前
半圆亻发布了新的文献求助10
8秒前
科研通AI2S应助阿泰采纳,获得10
8秒前
自由的松发布了新的文献求助10
9秒前
shego发布了新的文献求助10
9秒前
9秒前
ww完成签到 ,获得积分10
9秒前
慢慢来发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
longlingsheng发布了新的文献求助10
11秒前
11秒前
midoli完成签到,获得积分10
11秒前
11秒前
11秒前
tutuee完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
科研小白发布了新的文献求助10
13秒前
无花果应助67采纳,获得10
13秒前
英姑应助天天采纳,获得10
14秒前
111发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713133
求助须知:如何正确求助?哪些是违规求助? 5213704
关于积分的说明 15269646
捐赠科研通 4864955
什么是DOI,文献DOI怎么找? 2611759
邀请新用户注册赠送积分活动 1562014
关于科研通互助平台的介绍 1519213